Differential Equations

Math 341 Spring 2005
(C) 2005 Ron Buckmire

MWF 8:30-9:25am Fowler North 2
http://faculty.oxy.edu/ron/math/341

Class 22: Friday March 25

TITLE Non-homogeneous Systems of Linear Systems of First Order DEs
CURRENT READING Zill 8.2, Edwards \& Penney Handout

Homework Set \#9

Zill, Section 8.3: 3*, 9*, 11*, 19*, EXTRA CREDIT 32 (Use Variation of Parameters only) Zill, Section 8.4: 1*, 2*, 5*, 23*, EXTRA CREDIT 26
Zill, Chapter 8 In Review: $3^{*}, 4^{*}, 11^{*}, 15^{*}$

SUMMARY

We will apply the now-familiar technique of the method of variation of parameters to solve nonhomogeneous systems of DEs of the form $\vec{x}^{\prime}=A \vec{x}+\vec{f}$.

1. Complex Eigenvalues

If the eigenvalues of the matrix A are complex, then they will appear as complex conjugates (i.e. they will have the form $\lambda_{1}=\alpha+i \beta$ and $\lambda_{2}=\alpha-i \beta$) where $i^{2}=-1$ and α and β are both real numbers. The eigenvectors will also be complex. The corresponding solution to $\vec{x}^{\prime}=A \vec{x}$ will be linear combinations of $\vec{X}=\vec{v} e^{\lambda t}$ and its conjugate $\vec{X}^{*}=\vec{v}^{*} e^{\lambda^{*} t}$.
RECALL $e^{i \theta}=\cos \theta+i \sin (\theta)$. One can also obtain real-valued solutions from these complex solutions by choosing complex versions for the constants. The general solution in this case will be a linear combination of $[\operatorname{Re}(\vec{v}) \cos \operatorname{Im}(\lambda) t-\operatorname{Im}(\vec{v}) \sin \operatorname{Im}(\lambda) t] e^{\operatorname{Re}(\lambda) t}$ and $[\operatorname{Im}(\vec{v}) \cos \operatorname{Im}(\lambda) t+\operatorname{Re}(\vec{v}) \sin \operatorname{Im}(\lambda) t] e^{\operatorname{Re}(\lambda) t}$
Exercise Solve the initial value problem $\frac{d \vec{x}}{d t}=\left[\begin{array}{cc}2 & 8 \\ -1 & -2\end{array}\right] \vec{x}, \quad \vec{x}(0)=\left[\begin{array}{c}2 \\ -1\end{array}\right]$

2. Fundamental Matrix

RECALL We have said that we can write the solution of $\frac{d \vec{x}}{d t}=A \vec{x}$ as a linear combination of vectors $\vec{X}_{k}(t)$, i.e. $\vec{x}=\sum_{k=1}^{n} c_{k} \vec{X}_{k}$. If we put the constants $c_{k}, k=1,2$, dots, n into a vector \vec{c} and make the set of fundamental solutions $\vec{X}_{k}(t)$ the columns of a matrix $\Phi(t)$ then we can re-write the linear combination as a simple matrix multiplication, i.e. $\vec{x}=\Phi(t) \vec{c}$.
EXAMPLE (a) Show that $\vec{x}=\Phi \vec{c}$ as defined above is the linear combination of the fundamental set of solutions $\vec{X}_{k}(\mathrm{~b}) \Phi^{\prime}(t)=A \Phi(t)$ and (c) $\vec{x}_{h}=\Phi \vec{c}$ is a solution of the homogeneous system of DEs $\vec{x}^{\prime}=A \vec{x}$

DEFINITION: fundamental matrix

The matrix $\Phi(t)$ is called the fundamental matrix of the system of DEs on the interval I. The determinant of $\Phi(t)$ is the Wronkskian, $W\left(\vec{X}_{1}, \vec{X}_{2}, \ldots, \vec{X}_{n}\right)>0$ and therefor the fundamental matrix is non-singular and its inverse $\Phi^{-1}(t)$ must exist.

3. Variation of Parameters

Just like before, given a known solution to the homogeneous problem, we obtain a solution to the nonhomogeneousproblem by assuming it has a particular form. In this case, we let $\vec{X}_{p}=\Phi(t) \vec{U}(t)$ be a particular solution to the non-homogeneous DE system $\vec{x}^{\prime}=A \vec{x}+\vec{f}$

By plugging this formula for \vec{X}_{p} into this last expression, eliminating common terms and using the product rule we discover that

$$
\Phi(t) \vec{U}^{\prime}(t)=\vec{f}(t)
$$

But we can solve this expression for $\vec{U}(t)$,

$$
\vec{U}(t)=\int \Phi^{-1}(t) \vec{f}(t) d t
$$

so since $\vec{X}_{p}=\Phi(t) \vec{U}(t)$, then

$$
\vec{X}_{p}=\Phi(t) \int \Phi^{-1}(t) \vec{f}(t) d t
$$

and the general solution to the nonhomogeneous problem can be written as

$$
\vec{x}=\vec{X}_{h}+\vec{X}_{p}=\Phi \vec{c}+\int \Phi^{-1}(t) \vec{f}(t) d t
$$

EXAMPLE
Let's solve the initial value problem $\vec{x}^{\prime}=\left[\begin{array}{cc}-3 & 1 \\ 2 & -4\end{array}\right] \vec{x}+\left[\begin{array}{c}3 t \\ e^{-t}\end{array}\right], \vec{x}(0)=\left[\begin{array}{l}1 / 2 \\ 1 / 2\end{array}\right]$

