Differential Equations

Math 341 Spring 2005 ©2005 Ron Buckmire MWF 8:30 - 9:25am Fowler North 2 http://faculty.oxy.edu/ron/math/341

Class 21: Wednesday March 23

TITLE Homogeneous Systems of Linear Systems of First Order DEs **CURRENT READING** Zill 8.2, Edwards & Penney Handout

Homework Set #8

Zill, Section 8.1: 4*, 5*, 11*, 18* *EXTRA CREDIT 25* Zill, Section 8.2: 7*, 13*, 20* *EXTRA CREDIT 31, 49*

SUMMARY

We will look at techniques for solving homogeneous systems of DEs of the form $\vec{x}' = A\vec{x}$ and analyze the critical points of 2-D homogeneous linear and quasi-linear systems of DEs.

RECALL Previously we assumed that when solving an n^{th} order system of DEs we would have *n* associated eigenvectors \vec{v}_k corresponding to the *n* eigenvalues λ_k and thus the solution to $\vec{x}'(t) = A(t)\vec{x}(t)$ could be written as a linear combination of vectors \vec{X}_k where $\vec{X}_k = \vec{v}_k e^{\lambda_k t}$, so that $\vec{x} = \sum_{k=1}^n c_k \vec{v}_k e^{\lambda_k t} = c_2 \vec{v}_2 e^{\lambda_2 t} + c_2 \vec{v}_2 e^{\lambda_2 t} + \ldots + c_n \vec{v}_n e^{\lambda_n t}$ where $\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_n$ and $\vec{v}_1, \vec{v}_2, \vec{v}_3, \ldots, \vec{v}_n$ are the eigenvalues and corresponding eigenvectors of the matrix A.

1. Repeated Eigenvalues

DEFINITION: multiplicity

An eigenvalue λ_i which is repeated *m* times is said to be an **eigenvalue of multiplicity** *m*. When the *n* eigenvalues are not distinct then there may or may not be *n* associated eigenvectors.

CASE 1

A has an eigenvalue λ_* of multiplicity m < n which has m associated eigenvectors. In this case the solution has the form $\sum_{k=1}^{m} c_k \vec{v}_k e^{\lambda_* t} + \sum_{k=m+1}^{n} c_k \vec{v}_k e^{\lambda_k t}$ where v_k are the eigenvectors associated with λ_* .

CASE 2

A has an eigenvalue λ_* of multiplicity m < n which has p < m associated eigenvectors. In this case the solution has the form $\sum_{k=1}^{m} c_k \vec{X_k} + \sum_{k=m+1}^{n} c_k \vec{v_k} e^{\lambda_k t}$ where $\vec{X_m} = \sum_{k=1}^{m} \vec{w_{m-k+1}} \frac{t^{k-1}}{(k-1)!} e^{\lambda_* t}$ and $\vec{w_k}$ are a **chain of length k of generalized eigenvectors** of A and $\vec{v_k}$ are regular eigenvectors of A.

DEFINITION: generalized eigenvector

An eigenvector \vec{w} associated with λ such that $(A - \lambda I)^r \vec{w} = \vec{0}$ but $(A - \lambda I)^{r-1} \vec{w} \neq \vec{0}$ is called a generalized eigenvector of rank r.

DEFINITION: k chain of generalized eigenvectors

A chain of generalized eigenvectors of length k is a set of eigenvectors $\vec{w_1}, \vec{w_2}, \ldots, \vec{w_k}$ associated with an eigenvector λ such that

$$(A - \lambda I)\vec{w_k} = \vec{w_{k-1}}$$
$$(A - \lambda I)\vec{w_{k-1}} = \vec{w_{k-2}}$$
$$\vdots = \vdots$$
$$(A - \lambda I)\vec{w_2} = \vec{w_1}$$

From above, we can see that the k^{th} element in a chain of generalized eigenvectors has the property that $(A - \lambda I)^k \vec{w_k} = \vec{0}$. In practice, you'll start with using this equation to compute $\vec{w_k}$ and use the chain to compute $\vec{w_{k-1}} \dots \vec{w_1}$.

Exercise The matrix
$$A = \begin{bmatrix} 0 & 1 & 2 \\ -5 & -3 & -7 \\ 1 & 0 & 0 \end{bmatrix}$$
 has characteristic polynomial $p(\lambda) = (\lambda + 1)^3 = 0$ and one eigenvector $\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$. Find the generalized eigenvectors of A .

Write down the general solution of $\frac{d\vec{x}}{dt} = A = \begin{bmatrix} 0 & 1 & 2\\ -5 & -3 & -7\\ 1 & 0 & 0 \end{bmatrix} \vec{x}$

EXAMPLE Consider $\vec{x}' = \begin{bmatrix} 3 & -18 \\ 2 & -9 \end{bmatrix} \vec{x}$. Let's find the general solution.

Exercise Zill, page 345, Example 5. The matrix $\begin{bmatrix} 2 & 1 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 2 \end{bmatrix}$ has a single eigenvalue $\lambda = 2$ of multiplicity 3 and defect 2. It's only eigenvector is $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$

DEFINITION: defect

The defect d of an eigenvalue is the difference d = m - p between the multiplicity m and the number p of associated eigenvectors.

(a) Find the chain of generalized eigenvectors of length 2.

(b) Write down the general form of the solution.

2. 2-D Linear and Quasi-Linear Systems of DEs

We want to analyze systems which look like x' = f(x, y), y' = g(x, y) or $\vec{x}' = \vec{f}(\vec{x})$. If f(x, y) and g(x, y) are linear (or quasi-linear, i.e. approximately linear) then we can classify the critical points of the system (where $f(x_0, y_0) = 0$ and $g(x_0, y_0) = 0$ simultaneously). For example, suppose f and g have a critical point at the origin (0,0), then

$$\begin{aligned} x' &= f(x,y) \approx f(0,0) + f_x(0,0)x + f_y(0,0)y &= ax + by \\ y' &= g(x,y) \approx g(0,0) + g_x(0,0)x + g_y(0,0)y &= cx + dy \end{aligned}$$

The expression on the left is a Taylor (or Maclaurin) expansion of f and g about the point (0,0). If f and g are quasi-linear than near the origin this expansion is fairly accurate. In vector notation this would be $\vec{x}' = \vec{f}(\vec{0}) + J(\vec{0})\vec{x}$ where J is the Jacobian of $\vec{f}(\vec{x})$. Thus this is now a homogeneous system of linear ODEs with associated matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and characteristic polynomial $(a-\lambda)(d-\lambda)-bc = \lambda^2 - (a+d)\lambda + ad-bc = \lambda^2 - tr(A)\lambda + det(A) = 0$

The solutions λ_1 and λ_2 to the characteristic polynomial can be classified into a number of different cases depending on the qualities the eigenvalues possess.

GROUPWORK

Your goal is to match the case # in the left column with the description of its critical point on the right (the list now is jumbled).

CASE 1 : Real λ , $\lambda_1 \lambda_2 > 0$	\mathbf{A} (Stable) Center
CASE 2 : Real λ , $\lambda_1 \lambda_2 < 0$	\mathbf{B} (Stable) Spiral
CASE 3 : Real λ , $\lambda_1 = \lambda_2 < 0$	\mathbf{C} (Stable) Node
CASE 4 : Real λ , $\lambda_1 = \lambda_2 > 0$	$\mathbf{D}(\text{Unstable})$ Node
CASE 5 : Complex λ , $\operatorname{Re}(\lambda) \neq 0$	\mathbf{E} (Unstable) Saddle
CASE 6 : Complex λ , $\operatorname{Re}(\lambda) = 0$	\mathbf{F} (Unstable) Spiral

Below you can see what the Phase Portrait around a Center, Spiral or Node looks like.

Run the CD-Rom from Zill's textbook and select **Chapter 8: Linear Phase Portrait**. Use the slide bars to obtain different values of a, b, c and d and the different kinds of eigenvalues recorded above in the Cases. Record your results in the table below.

	a	b	с	d	λ_1	λ_2	Description
CASE #							
CASE #							
CASE #							
CASE #							
CASE #							
CASE #							

For more details, see the handout from Edwards and Penney, *Differential Equations*, 3rd Edition, Prentice Hall: 2004.