Differential Equations

Math 341 Spring 2005
(C) 2005 Ron Buckmire

MWF 8:30-9:25am Fowler North 2
http://faculty.oxy.edu/ron/math/341

Class 21: Wednesday March 23

TITLE Homogeneous Systems of Linear Systems of First Order DEs
CURRENT READING Zill 8.2, Edwards \& Penney Handout

Homework Set \#8

Zill, Section 8.1: 4*, $5^{*}, 11^{*}, 18^{*}$ EXTRA CREDIT 25
Zill, Section 8.2: 7*, 13*, 20* EXTRA CREDIT 31, 49

SUMMARY

We will look at techniques for solving homogeneous systems of DEs of the form $\vec{x}^{\prime}=A \vec{x}$ and analyze the critical points of 2-D homogeneous linear and quasi-linear systems of DEs.

RECALL Previously we assumed that when solving an $n^{\text {th }}$ order system of DEs we would have n associated eigenvectors \vec{v}_{k} corresponding to the n eigenvalues λ_{k} and thus the solution to $\vec{x}^{\prime}(t)=A(t) \vec{x}(t)$ could be written as a linear combination of vectors \vec{X}_{k} where $\vec{X}_{k}=\overrightarrow{v_{k}} e^{\lambda_{k} t}$, so that $\vec{x}=\sum_{k=1}^{n} c_{k} \vec{v}_{k} e^{\lambda_{k} t}=c_{2} \vec{v}_{2} e^{\lambda_{2} t}+c_{2} \vec{v}_{2} e^{\lambda_{2} t}+\ldots+c_{n} \vec{v}_{n} e^{\lambda_{n} t}$ where $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}$ and $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \ldots, \vec{v}_{n}$ are the eigenvalues and corresponding eigenvectors of the matrix A.

1. Repeated Eigenvalues

DEFINITION: multiplicity

An eigenvalue λ_{i} which is repeated m times is said to be an eigenvalue of multiplicity m. When the n eigenvalues are not distinct then there may or may not be n associated eigenvectors.

CASE 1

A has an eigenvalue λ_{*} of multiplicity $m<n$ which has m associated eigenvectors. In this case the solution has the form $\sum_{k=1}^{m} c_{k} \vec{v}_{k} e^{\lambda_{*} t}+\sum_{k=m+1}^{n} c_{k} \vec{v}_{k} e^{\lambda_{k} t}$ where v_{k} are the eigenvectors associated with λ_{*}.
CASE 2
A has an eigenvalue λ_{*} of multiplicity $m<n$ which has $p<m$ associated eigenvectors. In this case the solution has the form $\sum_{k=1}^{m} c_{k} \vec{X}_{k}+\sum_{k=m+1}^{n} c_{k} \vec{v}_{k} e^{\lambda_{k} t}$ where $\vec{X}_{m}=\sum_{k=1}^{m} \vec{w}_{m-k+1} \frac{t^{k-1}}{(k-1)!} e^{\lambda_{*} t}$ and $\overrightarrow{w_{k}}$ are a chain of length \mathbf{k} of generalized eigenvectors of A and $\overrightarrow{v_{k}}$ are regular eigenvectors of A.

DEFINITION: generalized eigenvector

An eigenvector \vec{w} associated with λ such that $(A-\lambda I)^{r} \vec{w}=\overrightarrow{0}$ but $(A-\lambda I)^{r-1} \vec{w} \neq \overrightarrow{0}$ is called a generalized eigenvector of rank \mathbf{r}.

DEFINITION: k chain of generalized eigenvectors

A chain of generalized eigenvectors of length k is a set of eigenvectors $\overrightarrow{w_{1}}, \overrightarrow{w_{2}}, \ldots, \overrightarrow{w_{k}}$ associated with an eigenvector λ such that

$$
\begin{aligned}
(A-\lambda I) \vec{w}_{k} & =\vec{w}_{k-1} \\
(A-\lambda I) \vec{w}_{k-1} & =\vec{w}_{k-2} \\
\vdots & =\vdots \\
(A-\lambda I) \vec{w}_{2} & =\vec{w}_{1}
\end{aligned}
$$

From above, we can see that the $k^{t h}$ element in a chain of generalized eigenvectors has the property that $(A-\lambda I)^{k} \vec{w}_{k}=\overrightarrow{0}$. In practice, you'll start with using this equation to compute \vec{w}_{k} and use the chain to compute $\vec{w}_{k-1} \ldots \vec{w}_{1}$.
Exercise The matrix $A=\left[\begin{array}{ccc}0 & 1 & 2 \\ -5 & -3 & -7 \\ 1 & 0 & 0\end{array}\right]$ has characteristic polynomial $p(\lambda)=(\lambda+1)^{3}=0$ and one eigenvector $\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$. Find the generalized eigenvectors of A.

Write down the general solution of $\frac{d \vec{x}}{d t}=A=\left[\begin{array}{ccc}0 & 1 & 2 \\ -5 & -3 & -7 \\ 1 & 0 & 0\end{array}\right] \vec{x}$
EXAMPLE Consider $\vec{x}^{\prime}=\left[\begin{array}{cc}3 & -18 \\ 2 & -9\end{array}\right] \vec{x}$. Let's find the general solution.

Exercise Zill, page 345, Example 5. The matrix $\left[\begin{array}{lll}2 & 1 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 2\end{array}\right]$ has a single eigenvalue $\lambda=2$ of multiplicity 3 and defect 2 . It's only eigenvector is $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T}$ DEFINITION: defect
The defect d of an eigenvalue is the difference $d=m-p$ between the multiplicity m and the number p of associated eigenvectors.
(a) Find the chain of generalized eigenvectors of length 2.
(b) Write down the general form of the solution.

2. 2-D Linear and Quasi-Linear Systems of DEs

We want to analyze systems which look like $x^{\prime}=f(x, y), \quad y^{\prime}=g(x, y)$ or $\vec{x}^{\prime}=\vec{f}(\vec{x})$. If $f(x, y)$ and $g(x, y)$ are linear (or quasi-linear, i.e. approximately linear) then we can classify the critical points of the system (where $f\left(x_{0}, y_{0}\right)=0$ and $g\left(x_{0}, y_{0}\right)=0$ simultaneously). For example, suppose f and g have a critical point at the origin (0,0), then

$$
\begin{aligned}
x^{\prime}=f(x, y) & \approx f(0,0)+f_{x}(0,0) x+f_{y}(0,0) y
\end{aligned}=a x+b y, ~=c x+d y
$$

The expression on the left is a Taylor (or Maclaurin) expansion of f and g about the point $(0,0)$. If f and g are quasi-linear than near the origin this expansion is fairly accurate. In vector notation this would be $\vec{x}^{\prime}=\vec{f}(\overrightarrow{0})+J(\overrightarrow{0}) \vec{x}$ where J is the Jacobian of $\vec{f}(\vec{x})$. Thus this is now a homogeneous system of linear ODEs with associated matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and characteristic polynomial $(a-\lambda)(d-\lambda)-b c=\lambda^{2}-(a+d) \lambda+a d-b c=\lambda^{2}-\operatorname{tr}(\mathrm{A}) \lambda+\operatorname{det}(\mathrm{A})=0$ The solutions λ_{1} and λ_{2} to the characteristic polynomial can be classified into a number of different cases depending on the qualities the eigenvalues possess.

GroupWork

Your goal is to match the case \# in the left column with the description of its critical point on the right (the list now is jumbled).

CASE 1: Real $\lambda, \lambda_{1} \lambda_{2}>0$
A (Stable) Center
CASE 2: Real $\lambda, \lambda_{1} \lambda_{2}<0$
B (Stable) Spiral
CASE 3: Real $\lambda, \lambda_{1}=\lambda_{2}<0$
C (Stable) Node
CASE 4: Real $\lambda, \lambda_{1}=\lambda_{2}>0$
D(Unstable) Node
CASE 5: Complex $\lambda, \operatorname{Re}(\lambda) \neq 0$
E (Unstable) Saddle
CASE 6: Complex $\lambda, \operatorname{Re}(\lambda)=0$
F (Unstable) Spiral
Below you can see what the Phase Portrait around a Center, Spiral or Node looks like.

Run the CD-Rom from Zill's textbook and select Chapter 8: Linear Phase Portrait. Use the slide bars to obtain different values of a, b, c and d and the different kinds of eigenvalues recorded above in the Cases. Record your results in the table below.

	a	b	c	d	λ_{1}	λ_{2}	Description
CASE \#							
CASE \#							
CASE \#							
CASE \#							
CASE \#							
CASE \#							

For more details, see the handout from Edwards and Penney, Differential Equations, 3rd Edition, Prentice Hall: 2004.

