Differential Equations

Math 341 Spring 2005
(C) 2005 Ron Buckmire

MWF 8:30-9:25am Fowler North 2
http://faculty.oxy.edu/ron/math/341

Class 20: Monday March 21

TITLE Systems of Linear Systems of First Order DEs: Theory
CURRENT READING Zill, 8.1 and 8.2

Homework Set \#8

Zill, Section 8.1: 4*, $5^{*}, 11^{*}, 18^{*}$ EXTRA CREDIT 25
Zill, Section 8.2: 7*, 13*, 20* EXTRA CREDIT 31, 49

SUMMARY

We will begin our study of systems of linear differential equations.

1. Theory of Linear Systems

Consider the following system of n linear first order differential equations

$$
\begin{aligned}
x_{1}^{\prime} & =a_{11}(t) x_{1}+a_{12}(t) x_{2}+a_{13}(t) x_{3}+\ldots+a_{1 n}(t) x_{n}+f_{1}(t) \\
x_{2}^{\prime} & =a_{21}(t) x_{1}+a_{22}(t) x_{2}+a_{23}(t) x_{3}+\ldots+a_{2 n}(t) x_{n}+f_{2}(t) \\
x_{3}^{\prime} & =a_{31}(t) x_{1}+a_{32}(t) x_{2}+a_{33}(t) x_{3}+\ldots+a_{3 n}(t) x_{n}+f_{3}(t) \\
\vdots & =\vdots \\
x_{n}^{\prime} & =a_{n 1}(t) x_{1}+a_{n 2}(t) x_{2}+a_{n 3}(t) x_{3}+\ldots+a_{n n}(t) x_{n}+f_{n}(t)
\end{aligned}
$$

The linear system is said to be homogeneous if the functions $f_{i}(t)$ are all identically zero, otherwise the systen is called nonhomogeneous.
The usefulness of the above form of a linear system is that it can be written in matrix form as $\vec{x}^{\prime}(t)=A(t) \vec{x}(t)+\vec{f}(t)$ (nonhomogeneous) and simply $\vec{x}^{\prime}=A \vec{x}$ (homogeneous).
EXAMPLE Write $x^{\prime}=x+3 y, \quad y^{\prime}=5 x+3 y$ in matrix form and confirm that
$\vec{x}_{1}=\left[\begin{array}{c}e^{-2 t} \\ -e^{-2 t}\end{array}\right]$ and $\vec{x}_{2}=\left[\begin{array}{c}3 e^{6 t} \\ 5 e^{6 t}\end{array}\right]$ are solutions.

Recall when we looked at $n^{\text {th }}$ order linear differential equations we said they are very similar to systems of n first order linear differential equations.
Question How can we show that a set of solution vectors $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \ldots, \vec{x}_{n}$ are linearly independent solutions of a homogeneous system of linear DEs?
Answer: Use the \qquad
Exercise Confirm that the given solutions in the previous example are linearly independent.

THEOREM Given $A(t)$ and $\vec{f}(t)$ are continuous functions on an interval I containing t_{0} then the initial value problem $\vec{x}^{\prime}(t)=A(t) \vec{x}(t)+\vec{f}(t), \quad \vec{x}\left(t_{0}\right)=\vec{x}_{0}$ possesses a unique solution on the interval I.

The unique solution \vec{x}_{h} to a homogeneous system of linear DEs can be written as a linear combination of the fundamental set of solutions. In other words, $\vec{x}_{h}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+$ $\ldots+c_{n} \vec{x}_{n}$. The general solution of a nonhomogeneous system can be written as a sum of the homogeneous solution and a particular solution, i.e. $\vec{x}=\vec{x}_{h}+\vec{x}_{p}$ where $\vec{x}_{h}^{\prime}=A \vec{x}_{h}$ and $\vec{x}_{p}^{\prime}=A \vec{x}_{p}+\vec{f}$
This solution $\vec{x}(t)$ is really a curve in space defined parametrically by the components $x_{1}(t), x_{2}(t), \ldots, x_{n}(t)$ known as a trajectory.

2. General Solution To Homogeneous Linear Systems

Consider again the system $\vec{x}^{\prime}=\left[\begin{array}{ll}1 & 3 \\ 5 & 3\end{array}\right] \vec{x}$. We can write the general solution as $\vec{x}=$ $c_{1}\left[\begin{array}{c}1 \\ -1\end{array}\right] e^{-2 t}+c_{2}\left[\begin{array}{l}3 \\ 5\end{array}\right] e^{6 t}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)$. Note that both solution vectors in the fundamental set of solution \vec{x}_{1} and \vec{x}_{2} can be written as $\vec{v} e^{\lambda t}$.
Exercise Write down the \vec{v} and λ for each solution vector.

Question Do you notice anything interesting about the vector \vec{v} and number λ for each solution? Any relationship to the matrix A ?
Answer The vectors in question are

THEOREM The general solution $\vec{x}(t)$ on the interval $(-\infty, \infty)$ to a homogeneous system of linear DEs $\vec{x}^{\prime}(t)=A(t) \vec{x}(t)$ can be written as $\vec{x}=c_{1} \vec{v}_{1} e^{\lambda_{1} t}+c_{2} \vec{v}_{2} e^{\lambda_{2} t}+c_{3} \vec{v}_{3} e^{\lambda_{3} t}+\ldots+c_{n} \vec{v}_{n} e^{\lambda_{n} t}$ where $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}$ and $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \ldots, \vec{v}_{n}$ are the eigenvalues and corresponding eigenvectors of the matrix A.
Exercise Zill, page 339, Example 1. Solve $\frac{d x}{d t}=2 x+3 y, \quad \frac{d y}{d t}=2 x+y$.

EXAMPLE Let's sketch the phase portrait of this system.
The solution functions are $x(t)=c_{1} e^{-t}+3 c_{2} e^{4 t}, \quad y(t)=-c_{1} e^{-t}+2 c_{2} e^{4 t}$.

