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SUMMARY
We will investigate techniques for finding solutions of solving nonhomogeneous DEs with
constant coefficients: the method of undetermined coefficients.

1. Method of Undetermined Coefficients

We are considering Linear Constant Coefficient nth Order DEs which have the form Lu = g(x)
where g(x) is either a constant function, a polynomial function, a (simple) exponential
function, sine or cosine or some finite sum or product of these functions.

Exercise Consider the following functions g(x). Which of these will the Method of Unde-
termined Coefficients solve Lu = g?

1. g(x) = ln(x)

2. g(x) = (2x2 − 3x + 4) sin(3x)

3. g(x) = ex2
cos(3x)

4. g(x) = ex cos(3x)

5. g(x) = x2ex cos(3x)

6. g(x) = 7

7. g(x) = 2/x

8. g(x) = tan(x)

9. g(x) = e−7x(x + 4)

10. g(x) = (x + 4)7

EXAMPLE Let’s use the Method of Undetermined Coefficients to solve
y′′ − 2y′ − 3y = 4x − 5 + 6xe2x



2. Formalizing The Method

First, find the fundamental set of solutions yh(x) to the homogeneous analogue Ly = 0 to
the given problem Ly = g

Second, examine the source function g(x) and guess a corresponding particular solution
yp(x) .

Third, substitute your guess for y(x) into Ly = g and group terms in order to find the
undetermined coefficients.

Form of g(x) Choice of yp(x)

42 (Any C 6= 0) A
3x + 5 Ax + B

2x2 − 4x + 4 Ax2 + Bx + C
x3 − 1 Ax3 + Bx2 + Cx + D

xn
n∑

k=0

ckx
k

sin(4x) A sin(4x) + B cos(4x)
cos(4x) A sin(4x) + B cos(4x)

e5x Ae5x

(9x − 2)e5x (Ax + B)e5x

x2e5x (Ax2 + Bx + C)e5x

e5x sin(2x) Ae5x cos(2x) + Be5x cos(2x)
x2 sin(2x) (Ax2 + Bx + C) cos(2x) + (Dx2 + Ex + F )e5x cos(2x)

xe5x sin(2x) (Ax + B)e5x cos(2x) + (Cx + D)e5x cos(2x)

Rules for Methods of Undetermined Coefficients (Zill)
Rule 1 The form of yp(x) is a linear combination of all linearly independent functions that
are generated by repeated differentiations of g(x)

Rule 2 If any part of yp(x) contains terms that duplicate terms in yh then that part of
yp must be multiplied by xn, where n is the smallest positive integer that eleiminates that
duplication.

Exercise Find the solution of y′′ − 2y′ + y = ex.



3. Higher Order Examples
EXAMPLE Solve y′′′ + y′′ = ex cos(x)

Exercise Determine the particular solution of y(4) + y′′′ = 1 − x2e−x



4. Annihilator Approach

DEFINITION: annihilator
A linear operator L is said to be an annihilator or annihilator operator for a function
f(x) if when L is applied to f zero results; in other words L[f ] = 0.

EXAMPLE What are the annihilator operators for the following functions:
(a) f(x) = xn

(b) f(x) = emx

(c) f(x) = xnemx

(d) f(x) = cos(βx)

(e) f(x) = emx cos(βx)

(f) f(x) = xnemx cos(βx)

EXAMPLE Let’s use the annihilator approach to find the particular solution of

(a) y′′ − 2y′ + y = ex (b) y′′′ + y′′ = ex cos(x) and (c) y(4) + y′′′ = 1 − x2e−x

Exercise Use the annihilator approach and the method of undetermined coefficients to
determine the particular solution for y′′ − 2y′ + y = 10e−2x cos(x)


