Differential Equations

Math 341 Spring 2005
(C) 2005 Ron Buckmire

MWF 8:30-9:25am Fowler North 2
http://faculty.oxy.edu/ron/math/341

Class 17: Monday February 28

TITLE Solving Nonhomogeneous DEs with Constant Coefficients
CURRENT READING Zill, 4.4 and 4.5

SUMMARY

We will investigate techniques for finding solutions of solving nonhomogeneous DEs with constant coefficients: the method of undetermined coefficients.

1. Method of Undetermined Coefficients

We are considering Linear Constant Coefficient $n^{\text {th }}$ Order DEs which have the form $L u=g(x)$ where $g(x)$ is either a constant function, a polynomial function, a (simple) exponential function, sine or cosine or some finite sum or product of these functions.
Exercise Consider the following functions $g(x)$. Which of these will the Method of Undetermined Coefficients solve $L u=g$?

1. $g(x)=\ln (x)$
2. $g(x)=\left(2 x^{2}-3 x+4\right) \sin (3 x)$
3. $g(x)=e^{x^{2}} \cos (3 x)$
4. $g(x)=e^{x} \cos (3 x)$
5. $g(x)=x^{2} e^{x} \cos (3 x)$
6. $g(x)=7$
7. $g(x)=2 / x$
8. $g(x)=\tan (x)$
9. $g(x)=e^{-7 x}(x+4)$
10. $g(x)=(x+4)^{7}$

EXAMPLE Let's use the Method of Undetermined Coefficients to solve $y^{\prime \prime}-2 y^{\prime}-3 y=4 x-5+6 x e^{2 x}$

2. Formalizing The Method

First, find the fundamental set of solutions $y_{h}(x)$ to the homogeneous analogue $L y=0$ to the given problem $L y=g$
Second, examine the source function $g(x)$ and guess a corresponding particular solution $y_{p}(x)$.

Third, substitute your guess for $y(x)$ into $L y=g$ and group terms in order to find the undetermined coefficients.

Form of $g(x)$	Choice of $y_{p}(x)$
$42($ Any $C \neq 0)$	A
$3 x+5$	$A x+B$
$2 x^{2}-4 x+4$	$A x^{2}+B x+C$
$x^{3}-1$	$A x^{3}+B x^{2}+C x+D$
x^{n}	$\sum_{k=0}^{n} c_{k} x^{k}$
$\sin (4 x)$	$A \sin (4 x)+B \cos (4 x)$
$\cos (4 x)$	$A \sin (4 x)+B \cos (4 x)$
$e^{5 x}$	$A e^{5 x}$
$(9 x-2) e^{5 x}$	$(A x+B) e^{5 x}$
$x^{2} e^{5 x}$	$\left(A x^{2}+B x+C\right) e^{5 x}$
$e^{5 x} \sin (2 x)$	$A e^{5 x} \cos (2 x)+B e^{5 x} \cos (2 x)$
$x^{2} \sin (2 x)$	$\left(A x^{2}+B x+C\right) \cos (2 x)+\left(D x^{2}+E x+F\right) e^{5 x} \cos (2 x)$
$x e^{5 x} \sin (2 x)$	$(A x+B) e^{5 x} \cos (2 x)+(C x+D) e^{5 x} \cos (2 x)$

Rules for Methods of Undetermined Coefficients (Zill)
Rule 1 The form of $y_{p}(x)$ is a linear combination of all linearly independent functions that are generated by repeated differentiations of $g(x)$

Rule 2 If any part of $y_{p}(x)$ contains terms that duplicate terms in y_{h} then that part of y_{p} must be multiplied by x^{n}, where n is the smallest positive integer that eleiminates that duplication.
Exercise Find the solution of $y^{\prime \prime}-2 y^{\prime}+y=e^{x}$.

3. Higher Order Examples

EXAMPLE Solve $y^{\prime \prime \prime}+y^{\prime \prime}=e^{x} \cos (x)$

Exercise Determine the particular solution of $y^{(4)}+y^{\prime \prime \prime}=1-x^{2} e^{-x}$

4. Annihilator Approach

DEFINITION: annihilator
A linear operator L is said to be an annihilator or annihilator operator for a function $f(x)$ if when L is applied to f zero results; in other words $L[f]=0$.

EXAMPLE What are the annihilator operators for the following functions:
(a) $f(x)=x^{n}$
(b) $f(x)=e^{m x}$
(c) $f(x)=x^{n} e^{m x}$
(d) $f(x)=\cos (\beta x)$
(e) $f(x)=e^{m x} \cos (\beta x)$
(f) $f(x)=x^{n} e^{m x} \cos (\beta x)$

EXAMPLE Let's use the annihilator approach to find the particular solution of
(a) $y^{\prime \prime}-2 y^{\prime}+y=e^{x}$ (b) $y^{\prime \prime \prime}+y^{\prime \prime}=e^{x} \cos (x)$ and (c) $y^{(4)}+y^{\prime \prime \prime}=1-x^{2} e^{-x}$

Exercise Use the annihilator approach and the method of undetermined coefficients to determine the particular solution for $y^{\prime \prime}-2 y^{\prime}+y=10 e^{-2 x} \cos (x)$

