Differential Equations

Math 341 Spring 2005
(C) 2005 Ron Buckmire

MWF 8:30-9:25am Fowler North 2
http://faculty.oxy.edu/ron/math/341

Class 16: Friday February 25

TITLE Homogeneous Linear ODEs with Constant Coefficients
CURRENT READING Zill, 4.3

SUMMARY

We will investigate techniques for finding solutions of homogeneous linear ODEs with constant coefficients.

Homework Set \#6

Zill, Section 4.2: 2*, 11*, 19*
Zill, Section 4.3: 6*, 16*, 23*, 33* EXTRA CREDIT 43,44,45,46,47,48
Zill, Section 4.6: 5*, 16*, 19* EXTRA CREDIT 30
We will begin by looking at solution techniques for solving the linear $2^{\text {nd }}$ order DE $a y^{\prime \prime}+b y^{\prime}+c y=0$ where a, b and c are constants.

1. Auxiliary Equation

Let's guess that the solution to Equation is $y=e^{m x}$. (In Physics, we would say "Let's make an ansatz of $y=e^{m x}$. By guessing $y=e^{m x}, y^{\prime}=m e^{m x}$ and $y^{\prime \prime}=m^{2} e^{m x}$ we obtain $\left(a m^{2}+b m+c\right) e^{m x}=0$ from which we know either $e^{m x}=0$ or $a m^{2}+b m+c=0$. The latter is known as the auxiliary equation.
Clearly there are three distinct types of solutions to this equation, depending on the values of a, b and c.
Case I: Two distinct real roots (when $b^{2}-4 a c>0$)
Case II: Two indistinct real roots (when $b^{2}-4 a c=0$)
Case III: Two distinct complex roots (when $b^{2}-4 a c<0$)

Case I: Two Real Roots

If there are two real roots, m_{1} and m_{2} then the fundamental set of solutions to the homogeneous linear DE is simply $y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}$ where the auxiliary equation $a m^{2}+b m+c=0$ can be factored as $\left(m-m_{1}\right)\left(m-m_{2}\right)=0$
Case II: One Repeated Real Root
If there is only one real root then we know we have one solution $y_{1}(x)=e^{m_{1} x}$ and the auxiliary equation can be factored as $\left(m-m_{1}\right)^{2}=0$. We can get a second solution by using the method of reduction of order where $P(x)=b / a$ and $Q(x)=c / a$ to show that the fundamental set of solutions is $y=c_{1} e^{m_{1} x}+c_{2} x e^{m_{1} x}$.
Exercise Show that when $a y^{\prime \prime}+b y^{\prime}+c y=0$ has one repeated root $m=m_{1}$ in the auxiliary equation and one solution $y=e^{m_{1} x}$ then another solution is $y_{2}(x)=x e^{m_{1} x}$.

Case III: Two Complex Roots
If there are two complex roots, then they are complex conjugate pairs $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$ where α and β are real numbers and $i^{2}=-1$.
The fundamental set of solutions in this case will be $y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\beta x)$
RECALL $e^{i \theta}=\cos \theta+i \sin \theta$
EXAMPLE Let's use these results to solve the equations
(a) $2 y^{\prime \prime}-5 y^{\prime}-3 y=0$
(b) $y^{\prime \prime}-10 y^{\prime}+25 y=0$
(c) $y^{\prime \prime}+4 y^{\prime}+7 y=0$

2. Higher Order Constant Coefficient Linear DEs

Things get more complicated when the order of the equation goes up, but the basic idea is the same. Consider the general $n^{t h}$ order linear constant coefficient DE, the auxiliary equation will have the form

$$
a_{n} m^{n}+a_{n-1} m^{n-1}+a_{n-2} m^{n-2}+\ldots+a_{2} m^{2}+a_{1} m+a_{0}=0
$$

If all the n roots are real and distinct, then the fundamental solution will be inspired by case I:
$y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}+c_{3} e^{m_{3} x}+\ldots+c_{n} e^{m_{n} x}$
If there are k repeated real roots (and $n-k$ distinct real roots) the fundamental solution will be inspired by Case II:
$y=c_{1} e^{m_{1} x}+c_{2} x e^{m_{1} x}+c_{3} x^{2} e^{m_{1} x}+\ldots+c_{k} x^{k-1} e^{m_{1} x}+d_{1} e^{m_{2} x}+d_{2} e^{m_{3} x}+\ldots d_{n-k} e^{m_{n-k} x}$
If there are k repeated complex roots (and $n-k$ distinct complex roots) the fundamental solution will be inspired by Case III:
$y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} x e^{\alpha x} \cos (\beta x)+c_{3} x^{2} e^{\alpha x} \cos (\beta x)+\ldots+c_{k} x^{k-1} e^{\alpha x} \cos (\beta x)+d_{1} e^{\alpha x} \sin (\beta x)+$ $d_{2} x e^{\alpha x} \sin (\beta x)+d_{3} x^{2} e^{\alpha x} \sin (\beta x)+\ldots+d_{k} x^{k-1} e^{\alpha x} \cos (\beta x)+p_{1} e^{\alpha_{2} x} \cos \left(\beta_{2} x\right)+q_{1} e^{\alpha_{2} x} \sin \left(\beta_{2} x\right)+$ $p_{2} e^{\alpha_{3} x} \cos \left(\beta_{3} x\right)+q_{2} e^{\alpha_{3} x} \sin \left(\beta_{3} x\right)+\ldots p_{n-k} e^{\alpha_{2} x} \cos \left(\beta_{n-k} x\right)+q_{n-k} e^{\alpha_{n-k} x} \sin \left(\beta_{n-k} x\right)$
Regardless, there are always n unknown functions in the fundamental set of solutions of an $n^{\text {th }}$ order linear constant coefficient DE.
Exercise Write down the fundamental solution of $7^{\text {th }}$ order differential equation which has the auxiliary equation $\left(m^{2}+2 m+4\right)^{2}(m-1)^{2}(m+4)=0$.

