Differential Equations

Math 341 Spring 2005
(C) 2005 Ron Buckmire

MWF 8:30-9:25am Fowler North 2
http://faculty.oxy.edu/ron/math/341

Class 14: Friday February 18

TITLE Solving Linear ODEs: Reduction of Order and Variation of Parameters
CURRENT READING Zill, 4.2 and 4.6

Homework Set \#6

Zill, Section 4.2: 2*, 11*, 19*
Zill, Section 4.3: 6*, 16*, 23*, 33* EXTRA CREDIT 43,44,45,46,47,48
Zill, Section 4.6: 5*, 16*, 19* EXTRA CREDIT 30

SUMMARY

We will investigate some techniques for finding solutions of second order linear DEs.

1. The Method of Reduction of Order

Consider the general homogeneous $2^{\text {nd }}$ order linear DE can be written

$$
\begin{equation*}
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 \tag{1}
\end{equation*}
$$

If we know a solution $y_{1}(x)$ which solves the above equation, we can find another by using the method of reduction of order. This will involve assuming the second solution has the form $y_{2}(x)=u(x) y_{1}(x)$ and showing that we can find $u(x)$ by solving a linear first order DE (using the \qquad method).

Assuming that $a_{2}(x)$ is not zero anywhere in the interval I that your given solution $y_{1}(x)$ is defined one can divide Equation 1 by $a_{2}(x)$ to obtain the standard form:

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0 \tag{2}
\end{equation*}
$$

By making the substitution $y=u(x) y_{1}(x)$ where $y_{1}(x)$ solves 2 above, show that u satisfies the equation

$$
y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+P y_{1}\right) u^{\prime}=0
$$

By letting $w=u^{\prime}$ we can obtain a linear DE for w

$$
w^{\prime}+\left(2 \frac{y_{1}^{\prime}}{y_{1}}+P\right) w=0
$$

We can show that this equation has the solution $w(x)=c_{1} \frac{e^{-\int P(x) d x}}{\left(y_{1}(x)\right)^{2}}$ and since $w=u^{\prime}$
$u(x)=c_{1} \int \frac{e^{-\int P(x) d x}}{\left(y_{1}(x)\right)^{2}} d x+c_{2}$ which leads us to the form of the second solution $y_{2}(x)$ to Equation (2) given by:

$$
y_{2}(x)=y_{1}(x) \int \frac{e^{-\int P(x) d x}}{\left(y_{1}(x)\right)^{2}} d x
$$

(Remember: $\left.y_{2}(x)=u(x) y_{1}(x)\right)$

Exercise 1 Show that $y_{2}(x)$ above satisfies the equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$.

EXAMPLE Zill, Example 2, page 141. Given that $y_{1}(x)=x^{2}$ is a solution to $x^{2} y^{\prime \prime}-$ $3 x y^{\prime}+4 y=0$ find the general solution of this differential equation on $(0, \infty)$.

2. The Method of Variation of Parameters

Consider the nonhomogeneous version of Equation (2),

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=f(x) \tag{3}
\end{equation*}
$$

If we have two solutions to the homogeneous version of the DE , called $y_{1}(x)$ and $y_{2}(x)$, then we can attempt to find two solutions to Equation (3) by assuming the particular solution will have the form $y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$ where $y_{h}=c_{1} y_{1}(x)+c_{2} y_{2}(x)$ is the solution to the corresponding homogeneous problem.
By carefully differentiating, we can obtain expressions for $y_{p}^{\prime}(x)$ and $y_{p}^{\prime \prime}(x)$ (which will contain u_{1}, u_{2}, y_{1} and y_{2} and their derivatives)

If we combine these expressions and substitute into Equation (3) we will obtain:

$$
\frac{d}{d x}\left[y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}\right]+P\left[y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}\right]+y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime}=f(x)
$$

This equation will be identically solved if

$$
\begin{aligned}
y_{1} u_{1}^{\prime}+y_{2} u_{2} & =0 \\
y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime} & =f(x)
\end{aligned}
$$

Questions

What are the unknowns in these equations? \qquad and

What are the knowns in these equations? \qquad and

We can solve these equations using Cramer's Rule!
EXAMPLE Let's show that we can use Cramer's Rule to obtain the formulas:

$$
u_{1}^{\prime}=\frac{-f(x) y_{2}(x)}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}} \quad \text { and } \quad u_{2}^{\prime}=\frac{f(x) y_{1}(x)}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}}
$$

(Note the denominator should look familiar: It is the of $y_{1}(x)$ and $y_{2}(x)$.)

Exercise 2 Consider $y^{\prime \prime}-4 y^{\prime}+4 y=0$. Show that $y_{1}(x)=e^{2 x}$ and $y_{2}=x e^{2 x}$ are solutions of the homogeneous DE.U se this information to obtain the solution of $y^{\prime \prime}-4 y^{\prime}+4 y=(x+1) e^{2 x}$.

Next we shall concentrate on methods to solve homogeneous linear DEs where we are not given any prior information (although we are going to generally require that the functions $P(x)$ and $Q(x)$ be pretty simple, usually constants or polynomials. This will be covered in Sections 4.3, 4.4/4.5 and 4.7 in Zill.

