Differential Equations

Math 341 Spring 2005
(C) 2005 Ron Buckmire

MWF 8:30-9:25am Fowler North 2 http://faculty.oxy.edu/ron/math/341

Class 13: Wednesday February 16

TITLE Analyzing Linear ODEs of Any Order
CURRENT READING Zill, 3.3

Homework Set \#5

Zill, Section 3.3: 1*, 15* EXTRA CREDIT Page 121, \#8; Page 122 \#18
Zill, Section 4.1: $5^{*}, 7^{*}, 8^{*}, 12^{*}$ EXTRA CREDIT 36, 37

SUMMARY

We will examine properties of n-th order linear differential equations and make some interesting connections to linear systems of algebraic equations.

1. Existence and Uniqueness of Solutions

The $\mathbf{n}^{\text {th }}$ order initial value problem is

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

with $y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, y^{\prime \prime}\left(x_{0}\right)=y_{2}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}$

THEOREM

Let $a_{0}(x), a_{1}(x), a_{2}(x), a_{3}(x), \ldots, a_{n}(x)$ and $g(x)$ be continuous on an interval I and let $a_{n}(x) \neq 0$ for every x in the interval I. If $x=x_{0}$ is any point in I, then a unique solution $y(x)$ exists on the interval I.
This is the $n^{\text {th }}$ order version of the existence and uniqueness theorem we learned for first-order DEs earlier.

2. Differential Operators

The act of differentiating a function $y(x)$ with respect to its independent variable, often denoted $\frac{d y}{d x}$ can also just simply be denoted $D y$. The symbol D is called a differential operator. Higher-order derivatives can be represented by multiple application of the operator, so $\left.\frac{d^{3} y}{d x^{3}}=D(D(D y))\right)=D^{3} y$
Differential operators can be combined into polynomial expressions which are also differential operators. In fact, the $n^{t h}$-order differential operator is defined as

$$
L=a_{n}(x) D^{n}+a_{n-1}(x) D^{n-1}+a_{n-2}(x) D^{n-2}+\ldots+a_{2}(x) D^{2}+a_{1}(x) D+a_{0}(x)
$$

so that an $n^{\text {th }}$-order linear differential equation can be written simply as $L y=g(x)$ (non-homogeneous version) or $L y=0$ (homogenenous version).

Linearity

Thanks to the rules of differentiation, the $n^{\text {th }}$ order differential operator L is a linear operator.
Specifically, $L[\alpha f(x)+\beta g(x)]=\alpha L[f(x)]+\beta L[g(x)]$

EXAMPLE Lets show that $\left(D^{2}+9\right)[\cos (3 x)]=0$

3. Homogeneous Linear $n^{\text {th }}$ order DEs

A consequence of L being a linear operator is that any solution of an $n^{\text {th }}$ order linear DE can be written as a superposition or linear combination of other solutions to the DE.

THEOREM

Let $y_{1}(x), y_{2}(x), y_{3}(x), \ldots, y_{n}(x)$ be solutions of an $n^{t h}$-order linear homogeneous DE on an interval I. The linear combination $y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{n} y_{n}(x)$ is also a solution of the DE , on the same interval, where c_{i} for $i=1, \ldots, n$ are arbitrary constants.

Corollary

(1) Any constant multiple $y=c y_{h}(x)$ of a given solution $y_{h}(x)$ is also a solution of a homogeneous linear DE $L y=0$
(2) A homogeneous linear DE $L y=0$ always posseses the trivial solution $y=0$

Exercise Prove these two corollaries.

RECALL A set of vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots \vec{v}_{n}$ is said to be linearly dependent if there exist constants $c_{1}, c_{2}, \ldots, c_{n}$ not all zero such that $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{n} \vec{v}_{n}=\overrightarrow{0}$. The vectors are said to be linearly independent if the only solution to the same equation is that $c_{1}=c_{2}=c_{3}=\ldots c_{n}=0$.
Interestingly, we can apply the identical idea to functions:

DEFINITION: linear dependence

A set of functions $f_{1}(x), f_{2}(x), f_{3}(x), \ldots, f_{n}(x)$ is said to be linearly dependent on an interval I if there exist constants $c_{1}, c_{2}, \ldots, c_{n}$ not all zero such that $c_{1} f_{1}(x)+c_{2} f_{2}(x)+$ $c_{3} f_{3}(x)+\ldots+c_{n} f_{n}(x)=0$ for every x in the interval I. If the set of functions is not linearly dependent, they are said to be linearly independent.
Exercise Are the functions e^{x} and e^{-x} linearly dependent? What about e^{x}, e^{-x} and $\cosh (x)$? How do we find solve this problem?

DEFINITION: Wronskian

The Wronskian of a set of n functions is denoted by the symbol $W\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ and is defined as the determinant of a matrix composed of columns which have the functions and their first $(n-1)$ derivatives, in other words:

$$
W\left(f_{1}, f_{2}, f_{3}, \ldots, f_{n}\right)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \ldots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \ldots & f_{n}^{\prime} \\
\vdots & \vdots & & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \ldots & f_{n}^{(n-1)}
\end{array}\right|
$$

EXAMPLE Let's compute the Wronskian of e^{x}, e^{-x} and $\cosh (x)$

THEOREM

Let $y_{1}(x), y_{2}(x), y_{3}(x), \ldots, y_{n}(x)$ be solutions of an $n^{t h}$-order linear homogeneous DE on an interval I. The set of solution is linearly independent on I if and only if $W\left(y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right) \neq$ 0 for every x in the interval I.

Question: Do you see any connections between the above theorem and the criteria for when solutions of the linear system of equations $A \vec{x}=\vec{b}$ exist?

THEOREM

The $n^{t h}$-order linear homogeneous DE possesses linearly independent solutions $y_{1}(x), y_{2}(x), y_{3}(x)$, $\ldots, y_{n}(x)$ on an interval I known as the fundamental set of solutions. The general solution of the $n^{t h}$ order linear homogeneous DE is $y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{n} y_{n}(x)$ where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

4. Nonhomogeneous Linear $n^{\text {th }}$ order DEs

Now that we have the general form of the solution to the homogeneous linear $n^{\text {th }}$ order DE we can consider the solution of non-homogeneous linear DEs. Given a particular solution y_{p} which solves the nonhomogenous linear $\mathrm{DE} L y_{p}=g(x)$ and a fundamental set of solutions to the homogeneous linear $\mathrm{DE} L y_{h}=0$ the general solution of the nonhomogeneous DE can be written as $y=y_{p}+y_{h}$, where $y_{h}=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{n} y_{n}(x)$ and $y_{i}(x)$ for $i=1, \ldots, n$ are all solutions of $L y=0$.
EXAMPLE Zill, Example 9, page 134. Show that $y_{1}=e^{x}, y_{2}=e^{2 x}$ and $y_{3}=e^{3 x}$ satisfy the homogeneous DE $y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0$. Also show that these three functions form a fundamental set of solutions to the homogeneous DE.

Zill, Example 10, page 135. Show that the function $y_{p}(x)=-\frac{11}{12}-\frac{1}{2} x$ is a particular solution to the nonhomogeneous DE $y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=3 x$ and write down the general solution of the nonhomogeneous DE.

