Differential Equations

Math 341 Spring 2005
(C) 2005 Ron Buckmire

MWF 8:30-9:25am Fowler North 2
http://faculty.oxy.edu/ron/math/341

Class 12: Monday February 14

TITLE Systems of First Order DEs
CURRENT READING Zill, 3.3

SUMMARY

We will explore models which are described using systems of first-order differential equations and indicate the complex dynamics which can occur.

1. Systems of n First-Order Differential Equations as n-th Order DEs

 The general form for a system of first order DEs is:$$
\begin{aligned}
& \frac{d x}{d t}=f_{1}(x, y, t) \\
& \frac{d y}{d t}=f_{2}(x, y, t)
\end{aligned}
$$

If f_{1} and f_{2} are linear in both variables x and y then the system is called linear, otherwise the system is called nonlinear.
Note that the theory of n linear first-order systems of DEs is inextricably linked to the theory of linear n-th order DEs. For example, if $y^{\prime \prime}=f(t, y(t)), y^{\prime}(t)$ and one makes the substitution $u_{2}=y^{\prime}(t)$ and $u_{1}=y(t)$ this second-order DE can be converted into a system of 2 first-order DEs.

Exercise Show that the third-order equation $y^{(3)}+3 y^{\prime \prime}+2 y^{\prime}-5 y=\sin (2 t)$ can be written as a linear system of first-order DEs.

2. 3-species decay model

Consider a radioactive decay series where element X decays into element Y at a rate λ_{1} which then decays into element Z at a rate λ_{2}. This is not an uncommon occurrence particularly in the case of Uranium.

The differential equations modelling this situation are:

$$
\begin{aligned}
& \frac{d x}{d t}=-\lambda_{1} x \\
& \frac{d y}{d t}=\lambda_{1} x-\lambda_{2} y \\
& \frac{d z}{d t}=\lambda_{2} y
\end{aligned}
$$

where $x(t), y(t)$ and $z(t)$ model the amount of each species X, Y and Z at time t. If initially at $t=0, x=x_{0}, y=y_{0}$ and $z=z_{0}$ how would you solve the system?

3. Lotka Volterra Model

Probably the most famous system of ordinary differential equations is the Lotka-Volterra predator-prey model. (The S-I-R model of epidemics would be a close second.) $x(t)$ denotes the population of predators (foxes) and $y(t)$ denotes the population of their prey (rabbits). Let a, b, c and d be positive parameters; the model is represented by:

$$
\begin{aligned}
& \frac{d x}{d t}=-a x+b x y \\
& \frac{d y}{d t}=-c x y+d y
\end{aligned}
$$

For what values of x and y are there constant solutions? (in other words, find the stationary points of the system of DEs.)

Using the CD-rom, explore the solution curves for different initial conditions if $\mathrm{a}=0.16$, $\mathrm{b}=0.08, \mathrm{c}=0.9$ and $\mathrm{d}=4.5$. Describe what you see. What happens as you approach the initial guess $x(0)=5, y(0)=2$?

