## Differential Equations

Math 341 Spring 2005
(C) 2005 Ron Buckmire

MWF 8:30-9:25am Fowler North 2
http://faculty.oxy.edu/ron/math/341

## Class 8: Friday February 4

TITLE Substitution Techniques for Solving First-Order DEs
CURRENT READING Zill, 2.5

## SUMMARY

We will be introduced to another technique for finding the solution of a DE when previously discussed methods (separation of variables, integrating factors, exact differentials) don't seem to apply. The idea is to transform the given DE into another DE using a substitution.

## 1. Substitution Examples

Consider the differential equation $\frac{d y}{d x}=f(x, y)$. If we assume that the solution will have the form $y=g(x, u)$ where $u=u(x)$ use the Chain Rule to show that the transformed differential equation will be $\frac{d u}{d x}=F(x, u)$ where $F$ depends on $f$ and partial derivatives of $g$.

## 2. Substitution Example

Suppose $\frac{d y}{d x}=F(A x+B y+C)$. If we make the substitution $u(x)=A x+B y(x)+C$ then this differential equation can be transformed by $\frac{d u}{d x}=A+B \frac{d y}{d x}$ into $\frac{d u}{d x}=A+B F(u)$. What technique can we use to obtain an expression for $u(x)$ and thus $y(x)$ ?

EXERCISE Zill, page 77, Example 3. Solve $y^{\prime}=(-2 x+y)^{2}, \quad y(0)=0$

## 3. Bernouilli Differential Equations

A differential equation which has the form $y^{\prime}+P(x) y=Q(x) y^{n}$ where $n$ is an real number is called a Bernouilli Equation. For $n=0$ and $n=1$ we already know how to solve the DE. How? For $n \neq 0$ and $n \neq 1$ the substitution $u(x)=y^{1-n}$ reduces a Bernouilli equation to a linear DE.

EXERCISE 2 Show that a Bernouilli Equation $y^{\prime}+P(x) y=Q(x) y^{n}$ can be solved for any value of $n$

## 4. Riccati Differential Equations

A nonlinear differential equation which has the form $y^{\prime}=A(x) y^{2}+B(x) y+C(x)$ is called a Riccati Equation. If one knows that $y=y_{1}(x)$ is a solution of the Riccati Equation, by using the substitution $u(x)=\frac{1}{y-y_{1}(x)}$ one can transform it into

$$
\frac{d u}{d x}+\left(B(x)+2 A(x) y_{1}(x)\right) v=-A(x)
$$

## 5. Clairault's Differential Equations

A differential equation which has the form $y=x y^{\prime}+g\left(y^{\prime}\right)$ is called a Clairault Equation. It's solution has the form $y(x)=C x+g(C)$ where $C$ is an unknown constant.
6. Homogeneous Differential Equations

DEFINITION: homogeneous functions
A function which has the property that $f(t x, t y)=t^{\alpha} f(x, y)$ is said to be a homogeneous function of degree $\alpha$. For example, $f(x, y)=x^{3}+y^{3}$ is homogeneous, while $f(x, y)=$ $x^{3}+y^{3}+1$ is not homogeneous. NOTE: this use of homogeneous has nothing to do with the more common use of homogeneous, meaning a solution which solves the version of an equation where the right hand side is zero.

Sadly, the textbook describes a first order DE which has the following form

$$
M(x, y) d x+N(x, y) d y=0
$$

where $M(x, y)$ and $N(x, y)$ are homogeneous functions of the same degree as a homogeneous first-order differential equation.

In other words, if $M(x, y)=x^{\alpha} M\left(\frac{y}{x}\right)$ and $N(x, y)=x^{\alpha} N\left(\frac{y}{x}\right)$ then $u=y / x$ is a substitution which will transform the homogeneous differential equation into separable differential equation.

Similarly, if $M(x, y)=y^{\alpha} M\left(\frac{x}{y}\right)$ and $N(x, y)=y^{\alpha} N\left(\frac{x}{y}\right)$ then $v=x / y$ is a substitution which will transform the homogeneous differential equation into separable differential equation.
Proof Let's show how the $u=y / x$ and $v=x / y$ substitutions "work."

EXAMPLE Solve $\left(4 x^{2}+3 y^{2}\right) d x-2 x y d y=0$

EXERCISE 3 Consider the differential equation

$$
\frac{d y}{d x}=x^{3}(y-x)^{2}+\frac{y}{x}
$$

(a) Show that $y=x$ is a solution to the differential equation.
(b) Find all the other solutions to this differential equation.

