Differential Equations

Math 341 Spring 2005 ©2005 Ron Buckmire MWF 8:30 - 9:25am Fowler North 2 http://faculty.oxy.edu/ron/math/341

Class 7: Wednesday February 2

TITLE Exact Differentials and Exact Equations **CURRENT READING** Zill, 2.4

Homework Set #3

Zill, Section 2.2: 2*, 3, 4*, 7, 9*, 16, 17*, 23*, 25, 26 EXTRA CREDIT 31, 39, 44 Zill, Section 2.3: 3, 4, 7*, 9, 15*, 22*, 29, 30, 31, 34* EXTRA CREDIT 35, 43, 50 Zill, Section 2.4: 5, 10*, 11*, 19, 27*, 30, 32, 38* EXTRA CREDIT 42, 44

SUMMARY

We will be introduced to another technique for finding the solution of a DE. This time we restrict the class of DEs we are trying to solve to be **exact differential equations**.

1. Exact Differentials

RECALL The contours of a surface z = f(x, y) are defined by the equation f(x, y) = c. An expression for the change in z, $dz = f_x dx + f_y dy = 0$.

DEFINITION: exact diferential

An exact differential has the form M(x,y) dx + N(x,y) dy in a region R of the xyplane if it corresponds to the differential of a function f(x,y) defined in R. The equation M(x,y) dx + N(x,y) dy = 0 is called an exact equation or exact differential equation if the expression on left hand side of the equation is an exact differential.

THEOREM

Let M(x, y) and N(x, y) be continuous and have continuous first partial derivatives in a rectangular region a < x < b, c < y < d.

M(x,y) dx + N(x,y) dy is an exact differential IF AND ONLY IF $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

Proof

 $M_y = N_x \Rightarrow M dx + N dy$ is an exact differential

Mdx+Ndy is an exact differential $\Rightarrow M_y=N_x$

EXAMPLE Zill, page 69, Example 1. Show that $2xy dx + (x^2 - 1) dy = 0$ is an exact differential equation and then solve the exact differential equation.

Exercise Zill, page 70, Example 3. Solve $\frac{dy}{dx} = \frac{xy^2 - \cos x \sin x}{y(1-x^2)}$, y(0) = 2.

2. Integrating Factors for Exact Differentials

If M(x, y)dx + N(x, y)dy = 0 is NOT an exact DE we can try and make it so by multiplying by an integrating factor $\mu(x, y)$ similar to what we used for linear first-order DEs.

If $(M_y - N_x)/N$ is a function of x only, then $\mu(x, y) = e^{\int \frac{M_y - N_x}{N} dx}$ If $(N_x - M_y)/M$ is a function of y only, then $\mu(x, y) = e^{\int \frac{N_x - M_y}{M} dy}$

EXAMPLE Zill, page 72, Example 4. Let's make $xy \, dx + (2x^2 + 3y^2 - 20) \, dy = 0$ an exact DE and write down the solution of the exact DE.