Differential Equations

MWF 8:30-9:25am Fowler North 2
(C) 2005 Ron Buckmire

Class 7: Wednesday February 2

TITLE Exact Differentials and Exact Equations
CURRENT READING Zill, 2.4

Homework Set \#3

Zill, Section 2.2: $2^{*}, 3,4^{*}, 7,9^{*}, 16,17^{*}, 23^{*}, 25,26$ EXTRA CREDIT 31, 39, 44
Zill, Section 2.3: 3, 4, $7^{*}, ~ 9, ~ 15^{*}, 22^{*}, ~ 29, ~ 30, ~ 31, ~ 34^{*}$ EXTRA CREDIT 35, 43, 50
Zill, Section 2.4: 5, 10* $11^{*}, 19,27^{*}, 30,32,38^{*}$ EXTRA CREDIT 42, 44

SUMMARY

We will be introduced to another technique for finding the solution of a DE. This time we restrict the class of DEs we are trying to solve to be exact differential equations.

1. Exact Differentials

RECALL The contours of a surface $z=f(x, y)$ are defined by the equation $f(x, y)=c$. An expression for the change in $z, d z=f_{x} d x+f_{y} d y=0$.

DEFINITION: exact diferential

An exact differential has the form $M(x, y) d x+N(x, y) d y$ in a region R of the $x y$ plane if it corresponds to the differential of a function $f(x, y)$ defined in R. The equation $M(x, y) d x+N(x, y) d y=0$ is called an exact equation or exact differential equation if the expression on left hand side of the equation is an exact differential.

THEOREM

Let $M(x, y)$ and $N(x, y)$ be continuous and have continuous first partial derivatives in a rectangular region $a<x<b, c<y<d$.
$M(x, y) d x+N(x, y) d y$ is an exact differential IF AND ONLY IF $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$

Proof

$M_{y}=N_{x} \Rightarrow M d x+N d y$ is an exact differential
$M d x+N d y$ is an exact differential $\Rightarrow M_{y}=N_{x}$

EXAMPLE Zill, page 69, Example 1. Show that $2 x y d x+\left(x^{2}-1\right) d y=0$ is an exact differential equation and then solve the exact differential equation.

Exercise Zill, page 70, Example 3. Solve $\frac{d y}{d x}=\frac{x y^{2}-\cos x \sin x}{y\left(1-x^{2}\right)}, \quad y(0)=2$.

2. Integrating Factors for Exact Differentials

If $M(x, y) d x+N(x, y) d y=0$ is NOT an exact DE we can try and make it so by multiplying by an integrating factor $\mu(x, y)$ similar to what we used for linear first-order DEs.
If $\left(M_{y}-N_{x}\right) / N$ is a function of x only, then $\mu(x, y)=e^{\int \frac{M_{y}-N_{x}}{N} d x}$
If $\left(N_{x}-M_{y}\right) / M$ is a function of y only, then $\mu(x, y)=e^{\int \frac{N_{x}-M_{y}}{M} d y}$
EXAMPLE Zill, page 72, Example 4. Let's make $x y d x+\left(2 x^{2}+3 y^{2}-20\right) d y=0$ an exact DE and write down the solution of the exact DE .

