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SUMMARY
We will be introduced to another technique for finding the solution of a DE. This time we
restrict the class of DEs we are trying to solve to be first-order linear ordinary differential
equations.

1. Initial Value Problems

DEFINITION: first-order linear DE

A first-order linear DE has the form a1(x)
dy

dx
+ a0(x)y = g(x). When g(x) = 0 the

equation is called homogeneous, when otherwise the the DE is called nonhomogeneous.

The standard form of a nonhomogeneous first-order linear DE is

dy

dx
+ P (x)y = Q(x) (1)

The general solution of this DE, y(x) can be written as the sum of two solutions, yh(x)
which solves the homogeneous version of the standard form (i.e. Q(x) = 0), and yp(x) which
is a particular solution of the nonhomogeneous form of the DE. In other words, y(x) =
yh(x) + yp(x). (Note, the book uses the symbol yc(x) instead of yh(x).)

Proof
It’s fairly straightforward to prove that this general solution can be split into homogeneous
and non-homogeneous parts:

It’s also straightforward to use separation of variables to produce an expression for the
solution to the homogeneous form, yh(x):



Integrating Factor

It turns out that if one takes the function µ(x) = e
∫

P (x)dx and multiplies each term in the
standard form in (1) by this integrating factor one obtains:
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∫
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∫
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EXAMPLE Zill, page 61, Example 3. Solve xy′ − 4y = x6ex

Exercise Zill, page 62, Example 5. Solve
dy

dx
+ y = x, y(0) = 4.

EXAMPLE Zill, page 63, Example 6.

Solve
dy

dx
+ y = f(x), y(0) = 0, where f(x) =

{
1, 0 ≤ x ≤ 1
0, x > 1

NOTE: the graph of the function y(x) on page 63 but also think about the question on page
66 in Exercise 42: Why is it technically incorrect to say that the function graphed is a
solution of the IVP on the interval [0,∞)?


