Differential Equations

Math 341 Spring 2005
(C) 2005 Ron Buckmire

MWF 8:30-9:25am Fowler North 4 http://faculty.oxy.edu/ron/math/341

Class 6: Monday January 31

TITLE First-Order Linear DEs
CURRENT READING Zill, 2.3

Homework Set \#3

Zill, Section 2.2: $2^{*}, 3,4^{*}, 7,9^{*}, 16,17^{*}, 23^{*}, 25,26$ EXTRA CREDIT 31, 39, 44
Zill, Section 2.3: 3, 4, $7^{*}, ~ 9, ~ 15^{*}, 22^{*}, ~ 29, ~ 30, ~ 31, ~ 34^{*}$ EXTRA CREDIT 35, 43, 50
Zill, Section 2.4: 5, 10*, 11*, 19, 27*, 30, 32, 38* EXTRA CREDIT 42, 44

SUMMARY

We will be introduced to another technique for finding the solution of a DE. This time we restrict the class of DEs we are trying to solve to be first-order linear ordinary differential equations.

1. Initial Value Problems

DEFINITION: first-order linear DE

A first-order linear DE has the form $a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)$. When $g(x)=0$ the equation is called homogeneous, when otherwise the the DE is called nonhomogeneous. The standard form of a nonhomogeneous first-order linear DE is

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=Q(x) \tag{1}
\end{equation*}
$$

The general solution of this DE, $y(x)$ can be written as the sum of two solutions, $y_{h}(x)$ which solves the homogeneous version of the standard form (i.e. $Q(x)=0$), and $y_{p}(x)$ which is a particular solution of the nonhomogeneous form of the DE. In other words, $y(x)=$ $y_{h}(x)+y_{p}(x)$. (Note, the book uses the symbol $y_{c}(x)$ instead of $y_{h}(x)$.)

Proof

It's fairly straightforward to prove that this general solution can be split into homogeneous and non-homogeneous parts:

It's also straightforward to use separation of variables to produce an expression for the solution to the homogeneous form, $y_{h}(x)$:

Integrating Factor

It turns out that if one takes the function $\mu(x)=e^{\int P(x) d x}$ and multiplies each term in the standard form in (1) by this integrating factor one obtains:

$$
\begin{aligned}
e^{\int P(x) d x} \frac{d y}{d x}+e^{\int P(x) d x} P(x) y & =Q(x) e^{\int P(x) d x} \\
\frac{d}{d x}\left(e^{\int P(x) d x} y\right) & =Q(x) e^{\int P(x) d x} \\
e^{\int P(x) d x} y & =\int Q(x) e^{\int P(x) d x} d x \\
y(x) & =e^{-\int P(x) d x} \int Q(x) e^{\int P(x) d x} d x
\end{aligned}
$$

EXAMPLE Zill, page 61, Example 3. Solve $x y^{\prime}-4 y=x^{6} e^{x}$

Exercise Zill, page 62, Example 5. Solve $\frac{d y}{d x}+y=x, \quad y(0)=4$.

EXAMPLE Zill, page 63, Example 6.

Solve $\frac{d y}{d x}+y=f(x), \quad y(0)=0$, where $f(x)=\left\{\begin{array}{lr}1, & 0 \leq x \leq 1 \\ 0, & x>1\end{array}\right.$

NOTE: the graph of the function $y(x)$ on page 63 but also think about the question on page 66 in Exercise 42: Why is it technically incorrect to say that the function graphed is a solution of the IVP on the interval $[0, \infty)$?

