Differential Equations

Name:	

Friday February 4
Ron Buckmire

Topic: Analyzing a Clairault Equation

The idea behind this bonus quiz is to provide you with an opportunity to illustrate your understanding of singular solutions to ordinary differential equations.

Reality	Check:
---------	--------

EXPECTED SCORE :	$_{-}/10$	ACTUAL SCORE :	_/1	(

Instructions:

- 1. Please look for a hint on this quiz posted to blackboard.oxy.edu
- 2. You may use the book or any of your class notes. You must work alone.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one.
- 4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- 5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
- 6. Relax and enjoy...
- 7. This quiz is due on Monday February 7, in class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I,	, pledge my hor	or as a human	being and	Occidental studer	at
that I have followed all the rules above	to the letter ar	nd in spirit.			

1. Consider the first-order, nonlinear Clairault equation

$$y = x \left(\frac{dy}{dx}\right) - \frac{1}{4} \left(\frac{dy}{dx}\right)^2$$

(a) 3 points. Confirm that the family of solutions is the set of lines $y = Cx - \frac{1}{4}C^2$.

(b) 5 points. Show that the lines $y = Cx - \frac{1}{4}C^2$ are tangent to the curve $y = x^2$ at the point $\left(\frac{C}{2}, \frac{C^2}{4}\right)$ and sketch the curve and its tangents below for at least 4 values of C.

(c) 2 points. Explain how parts (a) and (b) imply that $y = x^2$ is a singular solution of the given Clairault equation.