6. $\mathbf{Y}=\binom{x}{y}, \quad \frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}0 & 3 \\ -0.3 & 3 \pi\end{array}\right) \mathbf{Y}$
7. $\mathbf{Y}=\left(\begin{array}{c}p \\ q \\ r\end{array}\right), \quad \frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rrr}3 & -2 & -7 \\ -2 & 0 & 6 \\ 0 & 7.3 & 2\end{array}\right) \mathbf{Y}$
8. $\frac{d x}{d t}=-3 x+2 \pi y$
$\frac{d y}{d t}=4 x-y$
9. (a)

(b)

(b)

(c)

(c)

10. In this case, $d v / d t=d^{2} y / d t^{2}=0$, and the first-order system reduces to

$$
\begin{aligned}
& \frac{d y}{d t}=v \\
& \frac{d v}{d t}=0
\end{aligned}
$$

(a) Since $d v / d t=0$, we know that $v(t)=c$ for some constant c.
(b) Since $d y / d t=v=c$, we can integrate to obtain $y(t)=c t+k$ where k is another arbitrary constant. Hence, the general solution of the system consists of all functions of the form $(y(t), v(t))=(c t+k, c)$ for arbitrary constants c and k.
(c)

8. (a) The characteristic polynomial is

$$
(2-\lambda)(1-\lambda)-1=\lambda^{2}-3 \lambda+1=0,
$$

and therefore the eigenvalues are

$$
\lambda_{1}=\frac{3+\sqrt{5}}{2} \quad \text { and } \quad \lambda_{2}=\frac{3-\sqrt{5}}{2} .
$$

(b) To obtain the eigenvectors $\left(x_{1}, y_{1}\right)$ for the eigenvalue $\lambda_{1}=(3+\sqrt{5}) / 2$, we solve the system of equations

$$
\left\{\begin{aligned}
2 x_{1}-y_{1} & =\frac{3+\sqrt{5}}{2} x_{1} \\
-x_{1}+y_{1} & =\frac{3+\sqrt{5}}{2} y_{1}
\end{aligned}\right.
$$

and obtain

$$
y_{1}=\frac{1-\sqrt{5}}{2} x_{1},
$$

which is equivalent to the equation $2 y_{1}=(1-\sqrt{5}) x_{1}$.
Using the same procedure, we obtain the eigenvectors $\left(x_{2}, y_{2}\right)$ where $2 y_{2}=(1+\sqrt{5}) x_{2}$ for $\lambda_{2}=(3-\sqrt{5}) / 2$.
(c)

(d) One eigenvector \mathbf{V}_{1} for the eigenvalue λ_{1} is $\mathbf{V}_{1}=(2,1-\sqrt{5})$, and one eigenvector \mathbf{V}_{2} for the eigenvalue λ_{2} is $\mathbf{V}_{2}=(2,1+\sqrt{5})$.

Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$
\mathbf{Y}_{1}(t)=e^{(3+\sqrt{5}) t / 2}\binom{2}{1-\sqrt{5}} \quad \text { and } \quad \mathbf{Y}_{2}(t)=e^{(3-\sqrt{5}) t / 2}\binom{2}{1+\sqrt{5}} .
$$

The $x(t)$ - and $y(t)$-graphs for $\mathbf{Y}_{1}(t)$.

The $x(t)$ - and $y(t)$-graphs for $\mathbf{Y}_{2}(t)$.
(e) The general solution to this linear system is

$$
\mathbf{Y}(t)=k_{1} e^{(3+\sqrt{5}) t / 2}\binom{2}{1-\sqrt{5}}+k_{2} e^{(3-\sqrt{5}) t / 2}\binom{2}{1+\sqrt{5}}
$$

9. (a) The characteristic polynomial is

$$
(2-\lambda)(1-\lambda)-1=\lambda^{2}-3 \lambda+1=0,
$$

and therefore the eigenvalues are

$$
\lambda_{1}=\frac{3+\sqrt{5}}{2} \quad \text { and } \quad \lambda_{2}=\frac{3-\sqrt{5}}{2} .
$$

(b) To obtain the eigenvectors $\left(x_{1}, y_{1}\right)$ for the eigenvalue $\lambda_{1}=(3+\sqrt{5}) / 2$, we solve the system of equations

$$
\left\{\begin{aligned}
2 x_{1}+y_{1} & =\frac{3+\sqrt{5}}{2} x_{1} \\
x_{1}+y_{1} & =\frac{3+\sqrt{5}}{2} y_{1}
\end{aligned}\right.
$$

and obtain

$$
y_{1}=\frac{-1+\sqrt{5}}{2} x_{1},
$$

which is equivalent to the equation $2 y_{1}=(-1+\sqrt{5}) x_{1}$.
Using the same procedure, we obtain the eigenvectors $\left(x_{2}, y_{2}\right)$ where $2 y_{2}=(-1-\sqrt{5}) x_{2}$ for $\lambda_{2}=(3-\sqrt{5}) / 2$.
(c)

(d) One eigenvector \mathbf{V}_{1} for the eigenvalue λ_{1} is $\mathbf{V}_{1}=(2,-1+\sqrt{5})$, and one eigenvector \mathbf{V}_{2} for the eigenvalue λ_{2} is $\mathbf{V}_{2}=(-2,1+\sqrt{5})$.

Given the eigenvalues and these eigenvectors, we have two linearly independent solutions

$$
\mathbf{Y}_{1}(t)=e^{(3+\sqrt{5}) t / 2}\binom{2}{-1+\sqrt{5}} \quad \text { and } \quad \mathbf{Y}_{2}(t)=e^{(3-\sqrt{5}) t / 2}\binom{-2}{1+\sqrt{5}} .
$$

The $x(t)$ - and $y(t)$-graphs for $\mathrm{Y}_{1}(t)$.

The $x(t)$ - and $y(t)$-graphs for $\mathbf{Y}_{2}(t)$.
(e) The general solution to this linear system is

$$
\mathbf{Y}(t)=k_{1} e^{(3+\sqrt{5}) t / 2}\binom{2}{-1+\sqrt{5}}+k_{2} e^{(3-\sqrt{5}) t / 2}\binom{-2}{1+\sqrt{5}} .
$$

12. The characteristic polynomial is

$$
(3-\lambda)(-2-\lambda)=0,
$$

and therefore the eigenvalues are $\lambda_{1}=3$ and $\lambda_{2}=-2$.
To obtain the eigenvectors (x_{1}, y_{1}) for the eigenvalue $\lambda_{1}=3$, we solve the system of equations

$$
\left\{\begin{aligned}
3 x_{1} & =3 x_{1} \\
x_{1}-2 y_{1} & =3 y_{1}
\end{aligned}\right.
$$

and obtain

$$
5 y_{1}=x_{1}
$$

Therefore, an eigenvector for the eigenvalue $\lambda_{1}=3$ is $\mathbf{V}_{1}=(5,1)$.
Using the same procedure, we obtain the eigenvector $\mathbf{V}_{2}=(0,1)$ for $\lambda_{2}=-2$.
The general solution to this linear system is therefore

$$
\mathbf{Y}(t)=k_{1} e^{3 t}\binom{5}{1}+k_{2} e^{-2 t}\binom{0}{1} .
$$

(a) We have $\mathbf{Y}(0)=(1,0)$, so we must find k_{1} and k_{2} so that

$$
\binom{1}{0}=\mathbf{Y}(0)=k_{1}\binom{5}{1}+k_{2}\binom{0}{1}
$$

This vector equation is equivalent to the simultaneous system of linear equations

$$
\left\{\begin{aligned}
5 k_{1} & =1 \\
k_{1}+k_{2} & =0
\end{aligned}\right.
$$

Solving these equations, we obtain $k_{1}=1 / 5$ and $k_{2}=-1 / 5$. Thus, the particular solution is

$$
\mathbf{Y}(t)=\frac{1}{5} e^{3 t}\binom{5}{1}-\frac{1}{5} e^{-2 t}\binom{0}{1}
$$

(b) We have $\mathbf{Y}(0)=(0,1)$. Since this initial condition is an eigenvector associated to the $\lambda=-2$ eigenvalue, we do not need to do any additional calculation. The desired solution to the initialvalue problem is

$$
\mathbf{Y}(t)=e^{-2 t}\binom{0}{1}
$$

(c) We have $\mathbf{Y}(0)=(2,2)$, so we must find k_{1} and k_{2} so that

$$
\binom{2}{2}=\mathbf{Y}(0)=k_{1}\binom{5}{1}+k_{2}\binom{0}{1}
$$

This vector equation is equivalent to the simultaneous system of linear equations

$$
\left\{\begin{aligned}
5 k_{1} & =2 \\
k_{1}+k_{2} & =2
\end{aligned}\right.
$$

Solving these equations, we obtain $k_{1}=2 / 5$ and $k_{2}=8 / 5$. Thus, the particular solution is

$$
\mathbf{Y}(t)=\frac{2}{5} e^{3 t}\binom{5}{1}+\frac{8}{5} e^{-2 t}\binom{0}{1}
$$

16. The characteristic polynomial of \mathbf{A} is

$$
(a-\lambda)(d-\lambda)=0
$$

and thus the eigenvalues of \mathbf{A} are $\lambda_{1}=a$ and $\lambda_{2}=d$.
To find the eigenvectors $\mathbf{V}_{1}=\left(x_{1}, y_{1}\right)$ associated to $\lambda_{1}=a$, we need to solve the equation

$$
\mathbf{A} \mathbf{V}_{1}=a \mathbf{V}_{1}
$$

for all possible vectors \mathbf{V}_{1}. Rewritten in terms of components, this equation is equivalent to

$$
\left\{\begin{aligned}
a x_{1}+b y_{1} & =a x_{1} \\
d y_{1} & =a y_{1}
\end{aligned}\right.
$$

Since $a \neq d$, the second equation implies that $y_{1}=0$. If so, then the first equation is satisfied for all x_{1}. In other words, the eigenvectors \mathbf{V}_{1} associated to the eigenvalue a are the vectors of the form $\left(x_{1}, 0\right)$.

To find the eigenvectors $\mathbf{V}_{2}=\left(x_{2}, y_{2}\right)$ associated to $\lambda_{2}=d$, we need to solve the equation

$$
\mathbf{A} \mathbf{V}_{2}=d \mathbf{V}_{2}
$$

for all possible vectors \mathbf{V}_{2}. Rewritten in terms of components, this equation is equivalent to

$$
\left\{\begin{aligned}
a x_{2}+b y_{2} & =d x_{2} \\
d y_{2} & =d y_{2}
\end{aligned}\right.
$$

The second equation always holds, so the eigenvectors \mathbf{V}_{2} are those vectors that satisfy the equation $a x_{2}+b y_{2}=d x_{2}$, which can be rewritten as

$$
b y_{2}=(d-a) x_{2}
$$

These vectors form a line through the origin of slope $(d-a) / b$.
17. The characteristic polynomial of \mathbf{B} is

$$
\lambda^{2}-(a+d) \lambda+a d-b^{2}
$$

The roots of this polynomial are

$$
\begin{aligned}
\lambda & =\frac{a+d \pm \sqrt{(a+d)^{2}-4\left(a d-b^{2}\right)}}{2} \\
& =\frac{a+d \pm \sqrt{a^{2}+2 a d+d^{2}-4 a d+4 b^{2}}}{2} \\
& =\frac{a+d \pm \sqrt{(a-d)^{2}+4 b^{2}}}{2} .
\end{aligned}
$$

Since the discriminant $D=(a-d)^{2}+4 b^{2}$ is always nonnegative, the roots λ are real. Therefore, the matrix \mathbf{B} has real eigenvalues. If $b \neq 0$, then D is positive and hence \mathbf{B} has two distinct eigenvalues. (The only way to have only one eigenvalue is for $D=0$).

Page 9

18. The characteristic equation is

$$
(a-\lambda)(-\lambda)-b c=\lambda^{2}-a \lambda-b c=0 .
$$

Finding the roots via the quadratic formula, we obtain the eigenvalues

$$
\frac{a \pm \sqrt{a^{2}+4 b c}}{2}
$$

Note that these eigenvalues are very different from the case where the matrix is upper triangular (see Exercise 16). For example, they are not necessarily real numbers because $a^{2}+4 b c$ can be negative.

