HW Set #10: Sec 5.3 (2,9,12,13,14,18*); Chap 5 Rev (1,2,6,7,8,9,11,12,26,27); Sec. 6.1
(2,3,5,7,8,9,15,18,25%)

2. (a) If H(x, y) = sin(xy), then

— = vcos(xy
Jx . @)

and so
dy _ 9H
dt  ax
Similarly,
oH ) dx
— = xcos(xy) = —.
ay Y dt

(b) Note that the level sets of H are the (c) Note that there are many curves of equi-
same curves as those of the level sets of librium points for this system: besides
XVy. the origin, whenever xy = nmw + m/2,

the vector field vanishes.

9. We know that the equilibrium points of a Hamiltonian system cannot be sources or sinks. Phase
portrait (b) has a spiral source, so it is not Hamiltonian. Phase portrait (c¢) has a sink and a source,
so it is not Hamiltonian. Phase portraits (a) and (d) might come from Hamiltonian systems. (Try to
imagine a function which has the solution curves as level sets.)
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12,

13.

14.

First we check to see if the partial derivative with respect to x of the first component of the vector
field is the negative of the partial derivative with respect to y of the second component. We have

a1

— =0

ax
while 3

v
—— =-1
ay

Since these are not equal, the system is not Hamiltonian.

First we check to see if the partial derivative with respect to x of the first component of the vector
field is the negative of the partial derivative with respect to y of the second component. We have
d(x cosy)
———— =cosYy
dx ’
while
d(—ycosx)
—————~ = cos2x.
ay

Since these two are not equal, the system 1s not Hamiltonian.

First note that

IFQ) _,_ 96w
ax ay
that 1s, the partial derivative of the x component of the vector field with respect to x is equal to

the negative of the partial derivative of the y component with respect to y. Hence, the system is
Hamiltonian. Integrating the x component of the vector field with respect to y yields

1

HUJﬁsz@ﬂh+c

where the “constant™ ¢ could depend on x. If we differentiate this H with respect to x we get

o '(x)
e = —c'(x).

Thus we take ¢ = — f G(x)dx. A Hamiltonian function is

MLﬂ=fﬂﬂﬁ—fﬂUﬂ.
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18. (a) We have

dy : dx ] ’
so this system is Hamiltonian with the given function H.
(b) Note that dx /di = 0if and only if y = 0 and dy/dt = 0 if and only if x = +,/a. Consequently

if @ < 0, then there are no equilibrium points. If @ = 0, there is one equilibrium point at (0, 0)
and if @ > 0, there are two equilibrium points at (+./a, 0).

(e) The Jacobian matrix is
0 1
2x 0/

which, when evaluated at the equilibrium points, becomes

0 1
+2/a 0 |
At (y/a, 0), the eigenvalues are +,/2,/a so this equilibrium point is a saddle. At (—./a, 0), the

eigenvalues are +i+/24/a so this equilibrium point is a center. If a = 0 the eigenvalues are both
0, so this point is a node.

(d) y

(e
IS\

Phase portrait fora < 0 Phase portrait fora =0 Phase portrait fora = 0

(e) As a increases toward 0, the phase portrait changes from having no equilibrium points to having
a single equilibrium point at a = 0. If @ > 0, there is a pair of equilibrium points.

1. Since the equilibrium point is at the origin and the system has only polynomial terms, the linearized
system is just the linear terms in dx /dt and dy/dt, that is,

a’x_
—=
dy

E:
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2. From the linearized system in Exercise 1, we see (without any calculation) that the eigenvalues are 1
and —2. Hence, the origin 1s a saddle.

6. This system is not a Hamiltonian system. If it were, then we would have

aH B dx
dy  dt

dH dy
an Cax  di

for some function A (x, v). In that case, equality of mixed partials would imply that

d (dx\ 9 (dy
ax \dr )~ ay\dt)’
For this system, we have

d [dx a [dv
—_ —_— — 7 — — —_ — _2 .
ax (rfr ) 2y and oy (de‘ ) )

Since these two partials do not agree, no such function H(x, y) exists.

7. This system is not a gradient system. If it were, then we would have

G . dx
ax  dr

aG _ dy

d — =L
an ay  dt

for some function G (x, ¥). In that case, equality of mixed partials would imply that

d (dx\ 9 (dy
ay \dt) ax\dt)’
For this system, we have

d [dx a (dy
- | = [ 2 g —_ — | = Zlx.
3 (da‘) 2x +2y and P (a’!) 2x

Since these two partials do not agree, no such function G(x, v) exists.
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8. Some possibilities are:

e The solution 1s unbounded. That is, either |x(r)] — 00 or |y(¢)| — 00 (or both) as r increases.

e Similarly, x(r) or v(t) (or both) oscillate with increasing amplitude as ¢ increases (similar to
rsint).

e The solution tends to an equilibrium point.

e The solution tends to a periodic solution, as in the Van der Pol equation (see Section 5.1).

e The solution tends to a curve consisting of equilibrium points and solutions connecting equilib-
rium points.

9. If the system is a linear system, then all nonequilibrium solutions tend to infinity as ¢ increases, that
is, |[Y(7)| - o0 ast — 00.
If the system is not linear, it is possible for a solution to spiral toward a periodic solution. For
example, consider the Van der Pol equation discussed in Section 5.1. (These two behaviors are the
only possibilities.)

11. True. The x-nullcline is where dx/dt = 0 and the y-nullcline is where dy/dr = 0, so any point in
common must be an equilibrium point.

12. False. For example, both nullclines for the system

dx

0 U il
d ?
dy

—_— =y —2X
dr -

are the line y = x. Moreover, since the nullclines are identical, all points on the line are equilibrium
points.
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26. (a) Letting v = dx/dr, we obtain the system

d—'{ =3x — x> —2y.

From the first equation, we see that y = 0 for any equilibrium point. Substituting v = 0 in
the equation 3x — x> — 2y = 0 yields x = 0 or x> = 3. Hence. the equilibria are (0, 0) and

(++/3,0).
(b) The Jacobian matrix is
0 |
3-3x2 2/
Evaluating the Jacobian at (0, 0) yields
0 1
3 2 )

which has eigenvalues —3 and 1. Hence, the origin is a saddle. At (£+/3, 0), the Jacobian

matrix is
0 1
-6 =2/

which has eigenvalues —1 & i+/5. Hence, these two equilibria are spiral sinks.
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27. To see if the system is Hamiltonian, we compute

a(—3x + 10y) o(—x + 3y)
—_——=-3 and - —— =
ax ay

—3.

Since these partials agree, the system is Hamiltonian.
To find the Hamiltonian function, we use the fact that

oH dx
— = — = —3x 4+ 10v.
ay dt Iy

Integrating with respect to y gives

H(x,y) = =3xy + 5 + ¢ (x),
where ¢ (x) represents the terms whose derivative with respect to y are zero. Differentiating this
expression for H (x, y) with respect to x gives

dv
3y +¢'(x) = —d—:: =x —3y.

We choose ¢p(x) = %.1‘2 and obtain the Hamiltonian function
2
i i 2 2
H(x,y)==3xy+5y"+ —=.
We know that the solution curves of a Hamiltonian system remain on the level sets of the Hamil-
tonian function. Hence, solutions of this system satisfy the equation
x?
—3xy 45y + 5= h

for some constant /1. Multiplying through by 2 yields the equation
X2 —6xy+10y> =k

where & = 2/ is a constant.

Page 7




