2. (a) If $H(x, y)=\sin (x y)$, then

$$
\frac{\partial H}{\partial x}=y \cos (x y)
$$

and so

$$
\frac{d y}{d t}=-\frac{\partial H}{\partial x}
$$

Similarly,

$$
\frac{\partial H}{\partial y}=x \cos (x y)=\frac{d x}{d t} .
$$

(b) Note that the level sets of H are the same curves as those of the level sets of $x y$.

(c) Note that there are many curves of equilibrium points for this system: besides the origin, whenever $x y=n \pi+\pi / 2$, the vector field vanishes.

9. We know that the equilibrium points of a Hamiltonian system cannot be sources or sinks. Phase portrait (b) has a spiral source, so it is not Hamiltonian. Phase portrait (c) has a sink and a source, so it is not Hamiltonian. Phase portraits (a) and (d) might come from Hamiltonian systems. (Try to imagine a function which has the solution curves as level sets.)
12. First we check to see if the partial derivative with respect to x of the first component of the vector field is the negative of the partial derivative with respect to y of the second component. We have

$$
\frac{\partial 1}{\partial x}=0
$$

while

$$
-\frac{\partial y}{\partial y}=-1
$$

Since these are not equal, the system is not Hamiltonian.
13. First we check to see if the partial derivative with respect to x of the first component of the vector field is the negative of the partial derivative with respect to y of the second component. We have

$$
\frac{\partial(x \cos y)}{\partial x}=\cos y
$$

while

$$
-\frac{\partial(-y \cos x)}{\partial y}=\cos x
$$

Since these two are not equal, the system is not Hamiltonian.
14. First note that

$$
\frac{\partial F(y)}{\partial x}=0=-\frac{\partial G(x)}{\partial y}
$$

that is, the partial derivative of the x component of the vector field with respect to x is equal to the negative of the partial derivative of the y component with respect to y. Hence, the system is Hamiltonian. Integrating the x component of the vector field with respect to y yields

$$
H(x, y)=\int F(y) d y+c
$$

where the "constant" c could depend on x. If we differentiate this H with respect to x we get

$$
-\frac{\partial H}{\partial x}=-c^{\prime}(x)
$$

Thus we take $c=-\int G(x) d x$. A Hamiltonian function is

$$
H(x, y)=\int F(y) d y-\int G(x) d x .
$$

18. (a) We have

$$
\frac{\partial H}{\partial y}=y \quad \text { and } \quad-\frac{\partial H}{\partial x}=x^{2}-a
$$

so this system is Hamiltonian with the given function H.
(b) Note that $d x / d t=0$ if and only if $y=0$ and $d y / d t=0$ if and only if $x= \pm \sqrt{a}$. Consequently if $a<0$, then there are no equilibrium points. If $a=0$, there is one equilibrium point at $(0,0)$ and if $a>0$, there are two equilibrium points at $(\pm \sqrt{a}, 0)$.
(c) The Jacobian matrix is

$$
\left(\begin{array}{cc}
0 & 1 \\
2 x & 0
\end{array}\right)
$$

which, when evaluated at the equilibrium points, becomes

$$
\left(\begin{array}{cc}
0 & 1 \\
\pm 2 \sqrt{a} & 0
\end{array}\right)
$$

At $(\sqrt{a}, 0)$, the eigenvalues are $\pm \sqrt{2 \sqrt{a}}$ so this equilibrium point is a saddle. At $(-\sqrt{a}, 0)$, the eigenvalues are $\pm i \sqrt{2 \sqrt{a}}$ so this equilibrium point is a center. If $a=0$ the eigenvalues are both 0 , so this point is a node.
(d)

Phase portrait for $a<0$

Phase portrait for $a=0$

Phase portrait for $a>0$
(e) As a increases toward 0 , the phase portrait changes from having no equilibrium points to having a single equilibrium point at $a=0$. If $a>0$, there is a pair of equilibrium points.

1. Since the equilibrium point is at the origin and the system has only polynomial terms, the linearized system is just the linear terms in $d x / d t$ and $d y / d t$, that is,

$$
\begin{aligned}
& \frac{d x}{d t}=x \\
& \frac{d y}{d t}=-2 y
\end{aligned}
$$

2. From the linearized system in Exercise 1, we see (without any calculation) that the eigenvalues are 1 and -2 . Hence, the origin is a saddle.
3. This system is not a Hamiltonian system. If it were, then we would have

$$
\frac{\partial H}{\partial y}=\frac{d x}{d t} \quad \text { and } \quad-\frac{\partial H}{\partial x}=\frac{d y}{d t}
$$

for some function $H(x, y)$. In that case, equality of mixed partials would imply that

$$
\frac{\partial}{\partial x}\left(\frac{d x}{d t}\right)=-\frac{\partial}{\partial y}\left(\frac{d y}{d t}\right)
$$

For this system, we have

$$
\frac{\partial}{\partial x}\left(\frac{d x}{d t}\right)=2 y \quad \text { and } \quad-\frac{\partial}{\partial y}\left(\frac{d y}{d t}\right)=-2 y
$$

Since these two partials do not agree, no such function $H(x, y)$ exists.
7. This system is not a gradient system. If it were, then we would have

$$
\frac{\partial G}{\partial x}=\frac{d x}{d t} \quad \text { and } \quad \frac{\partial G}{\partial y}=\frac{d y}{d t}
$$

for some function $G(x, y)$. In that case, equality of mixed partials would imply that

$$
\frac{\partial}{\partial y}\left(\frac{d x}{d t}\right)=\frac{\partial}{\partial x}\left(\frac{d y}{d t}\right) .
$$

For this system, we have

$$
\frac{\partial}{\partial y}\left(\frac{d x}{d t}\right)=2 x+2 y \quad \text { and } \quad \frac{\partial}{\partial x}\left(\frac{d y}{d t}\right)=2 x
$$

Since these two partials do not agree, no such function $G(x, y)$ exists.
8. Some possibilities are:

- The solution is unbounded. That is, either $|x(t)| \rightarrow \infty$ or $|y(t)| \rightarrow \infty$ (or both) as t increases.
- Similarly, $x(t)$ or $y(t)$ (or both) oscillate with increasing amplitude as t increases (similar to $t \sin t$).
- The solution tends to an equilibrium point.
- The solution tends to a periodic solution, as in the Van der Pol equation (see Section 5.1).
- The solution tends to a curve consisting of equilibrium points and solutions connecting equilibrium points.

9. If the system is a linear system, then all nonequilibrium solutions tend to infinity as t increases, that is, $|\mathbf{Y}(t)| \rightarrow \infty$ as $t \rightarrow \infty$.

If the system is not linear, it is possible for a solution to spiral toward a periodic solution. For example, consider the Van der Pol equation discussed in Section 5.1. (These two behaviors are the only possibilities.)
11. True. The x-nullcline is where $d x / d t=0$ and the y-nullcline is where $d y / d t=0$, so any point in common must be an equilibrium point.
12. False. For example, both nullclines for the system

$$
\begin{aligned}
& \frac{d x}{d t}=x-y \\
& \frac{d y}{d t}=y-x
\end{aligned}
$$

are the line $y=x$. Moreover, since the nullclines are identical, all points on the line are equilibrium points.
26. (a) Letting $y=d x / d t$, we obtain the system

$$
\begin{aligned}
& \frac{d x}{d t}=y \\
& \frac{d y}{d t}=3 x-x^{3}-2 y
\end{aligned}
$$

From the first equation, we see that $y=0$ for any equilibrium point. Substituting $y=0$ in the equation $3 x-x^{3}-2 y=0$ yields $x=0$ or $x^{2}=3$. Hence, the equilibria are $(0,0)$ and ($\pm \sqrt{3}, 0$).
(b) The Jacobian matrix is

$$
\left(\begin{array}{cc}
0 & 1 \\
3-3 x^{2} & -2
\end{array}\right)
$$

Evaluating the Jacobian at $(0,0)$ yields

$$
\left(\begin{array}{rr}
0 & 1 \\
3 & -2
\end{array}\right)
$$

which has eigenvalues -3 and 1 . Hence, the origin is a saddle. At $(\pm \sqrt{3}, 0)$, the Jacobian matrix is

$$
\left(\begin{array}{rr}
0 & 1 \\
-6 & -2
\end{array}\right)
$$

which has eigenvalues $-1 \pm i \sqrt{5}$. Hence, these two equilibria are spiral sinks.
27. To see if the system is Hamiltonian, we compute

$$
\frac{\partial(-3 x+10 y)}{\partial x}=-3 \quad \text { and } \quad-\frac{\partial(-x+3 y)}{\partial y}=-3
$$

Since these partials agree, the system is Hamiltonian.
To find the Hamiltonian function, we use the fact that

$$
\frac{\partial H}{\partial y}=\frac{d x}{d t}=-3 x+10 y .
$$

Integrating with respect to y gives

$$
H(x, y)=-3 x y+5 y^{2}+\phi(x)
$$

where $\phi(x)$ represents the terms whose derivative with respect to y are zero. Differentiating this expression for $H(x, y)$ with respect to x gives

$$
-3 y+\phi^{\prime}(x)=-\frac{d y}{d t}=x-3 y
$$

We choose $\phi(x)=\frac{1}{2} x^{2}$ and obtain the Hamiltonian function

$$
H(x, y)=-3 x y+5 y^{2}+\frac{x^{2}}{2}
$$

We know that the solution curves of a Hamiltonian system remain on the level sets of the Hamiltonian function. Hence, solutions of this system satisfy the equation

$$
-3 x y+5 y^{2}+\frac{x^{2}}{2}=h
$$

for some constant h. Multiplying through by 2 yields the equation

$$
x^{2}-6 x y+10 y^{2}=k
$$

where $k=2 h$ is a constant.

