Math 312 Spring 2016 SHOW ALL YOUR WORK Quiz THREE

Adapted from Zill & Shanahan, pg. 70, #33.
1. (10 points) A fixed point of a mapping w = f(z) is a point zy where f(2q) = zo.

(a) (2 points) Does the linear mapping f(z) = az+ b have a fixed point 2,7 If so, find zj in terms
of the values of a and b. (NOTE: a and b can be any number in the complex plane).
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(b) (2 points) Give an example of a complex linear mapping (i.e. choose values for a and b) so
that f(z) has no fixed points.
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(c) (2 points) Give an example of a complex hnear mapping (i.e. choose values for a and b) so that
f(2) has more than one fixed point. [HINT There is only one such mapping possible!]
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(d) (4 points) The inverse mapping g(w) = cw + d is the complex linear mapping such that
9(f(2)) = z and f(g(w)) = w. In other words z = g(w) “undoes” whatever the mapping
w = f(z) does. Find the values of ¢ and d (in terms of the parameters a and b) so that
g(w) = cw+d is the inverse mapping of f(z). Confirm that your choice for z = g(w) is indeed
the inverse of w = f(2).
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