Adapted from Zill & Shanahan, pg. 70, #33.

- 1. (10 points) A fixed point of a mapping w = f(z) is a point z_0 where $f(z_0) = z_0$.
 - (a) (2 points) Does the linear mapping f(z) = az + b have a fixed point z_0 ? If so, find z_0 in terms of the values of a and b. (NOTE: a and b can be any number in the complex plane).

(b) (2 points) Give an example of a complex linear mapping (i.e. choose values for a and b) so that f(z) has no fixed points.

If az 1 then f(z): Z+b will have no fixed points because it's a translation (c) (2 points) Give an example of a complex linear mapping (i.e. choose values for a and b) so that

f(z) has more than one fixed point. [HINT: There is only one such mapping possible!]

(d) (4 points) The inverse mapping g(w) = cw + d is the complex linear mapping such that g(f(z)) = z and f(g(w)) = w. In other words z = g(w) "undoes" whatever the mapping w = f(z) does. Find the values of c and d (in terms of the parameters a and b) so that q(w) = cw + d is the inverse mapping of f(z). Confirm that your choice for z = q(w) is indeed the inverse of w = f(z).

e inverse of
$$w = f(z)$$
.
 $W = az + b \Rightarrow w - b = az \Rightarrow w - b = z$
 $g(w) = cw + d = w - b$
 $c = \frac{1}{a} 2 dz - b$
 $f(g(w)) = a(w - b) + b = aw - b + b = w$
 $g(f(z)) = g(az + b) = \frac{1}{a}(az + b) - \frac{b}{a}$
 $= z + \frac{b}{a} - b = z$
[Inverse only exist if $a \neq b$]