Ideals, Nik Van Rompaey

In abstract algebra, rings are an expansion on groups. A ring is notated $(R,+,\cdot)$ where

- (R,+) is a group
- \bullet + is its closed associative binary operation
- (R,+) must be abelian.
- \bullet The \cdot is a ring's second binary operation, which must be associative and distributive.

A **subgroup** of a group G is a subset of G, such that the subset is a group under the same binary operation as G.

A **subring** of a ring R is a subset of R, such that the subset is a ring under both binary operations.

An ideal, I, is a subring where r is closed under \cdot with every element in R.

Group	Ring
Given a nonempty set G	Given a nonempty set R
There is a binary operation \circ	Binary operations $+,\cdot$
\circ is associative:(a \circ b) \circ c = a \circ (b \circ c)	(R,+) is abelian
\circ is closed:a ϵ G and b ϵ G \Rightarrow a \circ b ϵ G	\cdot is both associative, and
Identity e ϵ G and $orall a \epsilon$ G, an inverse a^{-1}	distributive: $a \cdot (b+c) = a \cdot b + a \cdot c$
Subgroup	Subring
Set $H \subseteq G$	Set $S \subseteq R$
Same associative binary operation \circ	Same binary operations $+, \cdot$
H is a group under \circ	S is a ring under $+,\cdot$
Right Ideal	Left Ideal
Subring S in ring R, notated I ∀s∈l,∀r∈R, s∙r∈l	Subring S in ring R, notated I ∀sel,∀reR, r∙sel

References

• Saracino, Dan. Abstract Algebra A First Course. 2nd ed. Long Grove, Illinois: Waveland, 2008. Print.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ