Math Comps Part Two Proposal

The roots of -1

Danny Stauffer
April 27, 2016
Math 300

Table of contents

1. Abstract
2. Equation that needs to be proved

Abstract

Summary of Project Idea

The roots of -1 can be displayed as points on an Argand diagram. The roots will always be evenly spaced along the unit circle. This spacing gives rise to an even more interesting phenomenon-if lines are drawn connecting a single point to all of the $n-1$ other points, the product of the distances of each of these lines will be equal to the degree of z in the equation $z^{n}-1=0$. It is easy to see this is true by computing the product of the line distances for distinct values of n. However, a proof that generalizes this phenomenon for all positive integer values of n is significantly harder to come by. The objective of my presentation will be to create such a proof.

Equation that needs to be proved

Distance of roots equals order of equation

My comps project will be aimed at proving that for any equation $z^{n}=-1$:

$$
\prod_{k=1}^{n-1} \sqrt{\left(1-\left(\cos \left(\frac{2 \pi(k)}{n}\right)\right)\right)^{2}+\left(-\left(\sin \left(\frac{2 \pi(k)}{n}\right)\right)\right)^{2}}=n
$$

This means that the product of the distances of the lines going from a single root to each other root is equal to the order of z.

