PRACTICE Comprehensive Exam Department of Mathematics

Student Number (AXXXXXXX): ——

Tuesday, March 15, 2016

Closed book. Closed notes. NO CALCULATORS. Time allowed: 3 hours for 5 sections (proportionally less if taking fewer than 5 sections). In other words, 36 minutes for each section taken. Please write very legibly and cross out all scratch work.

Calculus 1

1	2	3	4	5	Total:
Calculus 2					
6	7	8	9	10	Total:
Multivariable Calculus					
11	12	13	14	15	Total:
Linear Algebra					
16	17	18	19	20	Total:
Discrete Mathematics					
21	22. ———	23. ———	24. ———	25	Total:

Linear Algebra

- 16. Decide if each of the statement is TRUE or FALSE. If FALSE, explain why its false or give a counter example that demonstrates why the statement is false. If TRUE, provide a short proof demonstrating why the statement is true. In all cases A is an $n \times n$ matrix of real numbers.
 - (a) $\det(-A) = -\det(A)$.
 - (b) For $A\vec{x} = \vec{b}$ to have a solution, \vec{b} must be in the rowspace of A.
 - (c) A is not invertible if and only if 0 is an eigenvalue of A.
 - (d) $(A^T)^T = A$.

17. Consider the following vector \vec{v} and subspace \mathcal{W} in \mathbb{R}^4 given below:

$$\vec{v} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \quad \mathcal{W} = \operatorname{span} \left(\begin{bmatrix} 1\\-1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix} \right).$$

(HINT: Recall that the projection matrix P onto a subspace spanned by the columns of a matrix A is given by $P = A(A^T A)^{-1} A^T$.)

- (a) Find the orthogonal decomposition of **v** with respect to W, i.e. find vectors $\mathbf{v_1} \in \mathcal{W}$ and $\mathbf{v_2} \in \mathcal{W}^{\perp}$ such that $\mathbf{v} = \mathbf{v_1} + \mathbf{v_2}$.
- (b) Confirm that your choice of $\mathbf{v_1}$ and $\mathbf{v_2}$ are indeed orthogonal and add up to $\mathbf{v}.$

- 18. (a) Write down the definition of the term "linearly independent."
 - (b) If vectors \vec{u}, \vec{v} , and \vec{w} are linearly independent, will $\vec{u} + \vec{v}, \vec{v} + \vec{w}$, and $\vec{u} + \vec{w}$ also be linearly independent? Justify your answer.

19. Consider

$$A = \begin{bmatrix} 6 & 4 \\ -6 & -4 \end{bmatrix}$$

(a) Confirm that
$$\begin{bmatrix} -2\\ 3 \end{bmatrix}$$
 and $\begin{bmatrix} -1\\ 1 \end{bmatrix}$ are eigenvectors for A.

(b) By diagonalizing A, show that an expression for
$$A^n = \begin{bmatrix} 3(2^n) & 2^{n+1} \\ -3(2^n) & -2^{n+1} \end{bmatrix}$$
.

20. Given

$$A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & -1 & -1 \end{bmatrix}$$

- (a) Find the rank of A.
- (b) Find bases for col(A), row(A) and null(A).

More Linear Algebra Practice Questions

1. Consider a vector \mathbf{v} and subspace \mathcal{W} given below:

$$\mathbf{v} = \begin{bmatrix} 2\\1\\5 \end{bmatrix}, \quad \mathcal{W} = \operatorname{span} \left(\begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right)$$

Find the orthogonal decomposition of \mathbf{v} with respect to W.

- 2. Consider the planes x + y + 4z = 5 and x + 2y + 3z = 4 in \mathbb{R}^3 .
 - (a) Find the equation of the line corresponding to their intersection and write it in parametric and vector form.
 - (b) Is the point (1, 0, 1) on the line of intersection of the two planes? How about the origin? EXPLAIN YOUR ANSWERS.
- 3. Find the eigenvalues and eigenspaces of $\begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$.

4. For what values of k does the following linear system have no solution?

$$kx + y + z = 1$$
$$x + ky + z = 1$$
$$x + y + kz = 1$$

5. Find the minimum distance between the following two parallel planes (Do not use a formula, show all work.)

$$2x - y + z = 1$$
$$-4x + 2y - 2z = 1$$

- 6. The system of equations $A\vec{x} = \vec{b}$ must have _____, ____ or _____ or _____ number of solutions. Provide an example of a linear system which demonstrates each case.
- 7. Prove or provide a counter-example. Let A be a square invertible matrix.

$$(A^{-1})^T = (A^T)^{-1}$$

- 8. Prove or provide a counter-example. Let A be a $m \times n$ matrix. The system of equations $A\vec{x} = \vec{b}$ is consistent (i.e. has at least 1 solution) if and only if \vec{b} is in the column space of A.
- 9. Consider the planes x + y + 4z = 5 and x + 2y + 3z = 4 in \mathbb{R}^3 .
 - (a) Find the equation of the line corresponding to their intersection and write it in parametric and vector form.
 - (b) Is the point (1,0,1) on the line of intersection of the two planes? How about the origin? EXPLAIN YOUR ANSWERS.
- 10. TRUE or FALSE. Give a reason for your answer.
 - (a) det(A) is given by the sum of its eigenvalues.
 - (b) The nullspace of an $m \times n$ matrix is always a subspace of \mathbb{R}^m
 - (c) The rowspace of an $m \times n$ matrix is always a subspace of \mathbb{R}^n
 - (d) The eigenvalues of A and A^T are always identical.
- 11. (Problem 48 from Section 2.3 of Poole **2nd Edition**)

Let $\{\vec{v}_1, \ldots, \vec{v}_k\}$ be a linearly independent set of vectors in \mathbb{R}^n , and let \vec{v} be a vector in \mathbb{R}^n . Suppose that $\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_k \vec{v}_k$ with $c_1 \neq 0$. Prove that $\{\vec{v}, \vec{v}_2, \ldots, \vec{v}_k\}$ is linearly independent.

- 12. (Problem 42 from Section 3.3 of Poole **2nd Edition**) Let \mathcal{O} by the zero matrix (all entries are zero).
 - (a) Prove that if A is invertible and $AB = \mathcal{O}$, then $B = \mathcal{O}$.
 - (b) Give a counterexample to show that the result in part (a) may fail if A is not invertible.