\qquad

Closed book. Closed notes. No Calculators. Time allowed: 3 hours for 5 sections (proportionally less if taking fewer than 5 sections). In other words, 36 minutes for each section taken. Please write very legibly and cross out all scratch work.

Calculus 1

1.
2.

\square
3.
——
4.
5.
——
Total:
\square

Calculus 2
6. \qquad 7.
8.
9.
10.
Total:

Multivariable Calculus

11. \qquad 12.
12. \qquad 14.
13. \qquad Total: \qquad

Linear Algebra

16. \qquad 17. \qquad 18. \qquad 19.
17.

Total:

Discrete Mathematics

21.
22.
23.
24.
25.

Total:

Linear Algebra

16. Decide if each of the statement is TRUE or FALSE. If FALSE, explain why its false or give a counter example that demonstrates why the statement is false. If TRUE, provide a short proof demonstrating why the statement is true. In all cases A is an $n \times n$ matrix of real numbers.
(a) $\operatorname{det}(-A)=-\operatorname{det}(A)$.
(b) For $A \vec{x}=\vec{b}$ to have a solution, \vec{b} must be in the rowspace of A.
(c) A is not invertible if and only if 0 is an eigenvalue of A.
(d) $\left(A^{T}\right)^{T}=A$.
17. Consider the following vector \vec{v} and subspace \mathcal{W} in \mathbb{R}^{4} given below:

$$
\vec{v}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \mathcal{W}=\operatorname{span}\left(\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]\right)
$$

(HINT: Recall that the projection matrix P onto a subspace spanned by the columns of a matrix A is given by $P=A\left(A^{T} A\right)^{-1} A^{T}$.)
(a) Find the orthogonal decomposition of \mathbf{v} with respect to W, i.e. find vectors $\mathbf{v}_{\mathbf{1}} \in \mathcal{W}$ and $\mathbf{v}_{\mathbf{2}} \in \mathcal{W}^{\perp}$ such that $\mathbf{v}=\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}$.
(b) Confirm that your choice of $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are indeed orthogonal and add up to \mathbf{v}.
18. (a) Write down the definition of the term "linearly independent."
(b) If vectors \vec{u}, \vec{v}, and \vec{w} are linearly independent, will $\vec{u}+\vec{v}, \vec{v}+\vec{w}$, and $\vec{u}+\vec{w}$ also be linearly independent? Justify your answer.
19. Consider

$$
A=\left[\begin{array}{cc}
6 & 4 \\
-6 & -4
\end{array}\right]
$$

(a) Confirm that $\left[\begin{array}{c}-2 \\ 3\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ are eigenvectors for A.
(b) By diagonalizing A, show that an expression for $A^{n}=\left[\begin{array}{cc}3\left(2^{n}\right) & 2^{n+1} \\ -3\left(2^{n}\right) & -2^{n+1}\end{array}\right]$.
20. Given

$$
A=\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & 1 & -1 & 1 \\
0 & 1 & -1 & -1
\end{array}\right]
$$

(a) Find the rank of A.
(b) Find bases for $\operatorname{col}(A), \operatorname{row}(A)$ and $\operatorname{null}(A)$.

More Linear Algebra Practice Questions

1. Consider a vector \mathbf{v} and subspace \mathcal{W} given below:

$$
\mathbf{v}=\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right], \quad \mathcal{W}=\operatorname{span}\left(\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)
$$

Find the orthogonal decomposition of \mathbf{v} with respect to W.
2. Consider the planes $x+y+4 z=5$ and $x+2 y+3 z=4$ in \mathbb{R}^{3}.
(a) Find the equation of the line corresponding to their intersection and write it in parametric and vector form.
(b) Is the point $(1,0,1)$ on the line of intersection of the two planes? How about the origin? EXPLAIN YOUR ANSWERS.
3. Find the eigenvalues and eigenspaces of $\left[\begin{array}{ccc}1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1\end{array}\right]$.
4. For what values of k does the following linear system have no solution?

$$
\begin{aligned}
& k x+y+z=1 \\
& x+k y+z=1 \\
& x+y+k z=1
\end{aligned}
$$

5. Find the minimum distance between the following two parallel planes (Do not use a formula, show all work.)

$$
\begin{array}{r}
2 x-y+z=1 \\
-4 x+2 y-2 z=1
\end{array}
$$

6. The system of equations $A \vec{x}=\vec{b}$ must have \qquad or \qquad
number of solutions. Provide an example of a linear system which demonstrates each case.
7. Prove or provide a counter-example. Let A be a square invertible matrix.

$$
\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}
$$

8. Prove or provide a counter-example. Let A be a $m \times n$ matrix. The system of equations $A \vec{x}=\vec{b}$ is consistent (i.e. has at least 1 solution) if and only if \vec{b} is in the column space of A.
9. Consider the planes $x+y+4 z=5$ and $x+2 y+3 z=4$ in \mathbb{R}^{3}.
(a) Find the equation of the line corresponding to their intersection and write it in parametric and vector form.
(b) Is the point $(1,0,1)$ on the line of intersection of the two planes? How about the origin? EXPLAIN YOUR ANSWERS.
10. TRUE or FALSE. Give a reason for your answer.
(a) $\operatorname{det}(A)$ is given by the sum of its eigenvalues.
(b) The nullspace of an $m \times n$ matrix is always a subspace of \mathbb{R}^{m}
(c) The rowspace of an $m \times n$ matrix is always a subspace of \mathbb{R}^{n}
(d) The eigenvalues of A and A^{T} are always identical.
11. (Problem 48 from Section 2.3 of Poole 2nd Edition)

Let $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ be a linearly independent set of vectors in \mathbb{R}^{n}, and let \vec{v} be a vector in \mathbb{R}^{n}. Suppose that $\vec{v}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{k} \vec{v}_{k}$ with $c_{1} \neq 0$. Prove that $\left\{\vec{v}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ is linearly independent.
12. (Problem 42 from Section 3.3 of Poole 2nd Edition) Let \mathcal{O} by the zero matrix (all entries are zero).
(a) Prove that if A is invertible and $A B=\mathcal{O}$, then $B=\mathcal{O}$.
(b) Give a counterexample to show that the result in part (a) may fail if A is not invertible.

