PRACTICE Comprehensive Exam

Department of Mathematics

Closed book. Closed notes. NO CALCULATORS. Time allowed: 3 hours for 5 sections (proportionally less if taking fewer than 5 sections). In other words, 36 minutes for each section taken. Please write very legibly and cross out all scratch work.

Calculus 1

1	— 2. ——	— 3. ——	4	— 5. —	— Total: ———
Calculu	ıs 2				
6	— 7. ——	— 8. ——	— 9. ——	— 10. ——	— Total: ———
Multiva	ariable Calo	ulus			
11	12	— 13. —	14	15	— Total: —
Linear	Algebra				
16	17	18	19	20	— Total: — —
Discr	ete Mat	hematic	CS		
21	22	23	24	25	— Total: ——

Discrete Mathematics

21. Let R be a relation on the set \mathbb{R}^2 defined by

 $(x_1, y_1)R(x_2, y_2)$ if and only if $x_1 - y_1 = x_2 - y_2$.

- (a) (2 points) Prove that R is an equivalence relation on \mathbb{R}^2 .
- (b) (1 point) Describe the equivalence class of the element (3, 2) both in set-builder notation and geometrically.
- (c) (1 point) Describe geometrically (provide a geometric interpretation of) how the equivalence classes of R partition the plane \mathbb{R}^2 .

22. Prove the following is a tautology for statements p, q and r:

$$[(p \to q) \land (q \to r)] \to (p \to r)$$

(HINT: Use a truth table!)

- 23. Consider the letters (or characters) from the standard 26-member English alphabet.
 - (a) What is the number of character strings containing six letters?
 - (b) What is the number of character strings containing six letters if no letter gets repeated in each string?
 - (c) What is the number of six-letter strings with exactly two vowels (where the set of vowels in English is defined to be the 7 letters $\{a, e, i, o, u, w, y\}$)?
 - (d) What is the number of six-letter strings with the letter a?
 - (HINT: You do not need to numerically simplify your calculations.)

- 24. Let A be a set of n elements. The power set of A, P(A) is the set of all subsets of A.
 - (a) How many elements are there in P(A)? Prove it.
 - (b) Prove or disprove: $P(A \cup B) = P(A) \cup P(B)$.

25. Prove by induction for all integers $n \ge 2$:

$$2 + 6 + 12 + \dots + (n^2 - n) = \frac{n(n^2 - 1)}{3}.$$

More Discrete Mathematics Practice Questions

- 1. Prove that these four statements about the integers n are equivalent:
 - (a) n^2 is odd;
 - (b) 1 n is even;
 - (c) n^3 is odd;
 - (d) $n^2 + 1$ is even.
- 2. Show that $\neg(p \lor q)$ and $\neg p \land \neg q$ are logically equivalent.
- 3. Define the term **bijection** and then provide a graphical representation of a bijection from a finite set A to B.
- 4. Let R be a relation on the set \mathbb{R}^2 defined by

 $(x_1, y_1)R(x_2, y_2)$ if and only if $x_1^2 + y_1^2 = x_2^2 + y_2^2$.

- (a) Prove that R is an equivalence relation on \mathbb{R}^2 .
- (b) Describe the equivalence class of the element (3, 2) both in set-builder notation and geometrically.
- (c) Describe geometrically how the equivalence classes of R partition the plane \mathbb{R}^2 .
- 5. Let

$$A = \{x \in \mathbb{Z} : 4x \equiv 19 \pmod{21}\}$$
$$B = \{x \in \mathbb{Z} : x \equiv 10 \pmod{21}\}$$
$$C = \{x \in \mathbb{Z} : 3x \equiv 2 \pmod{7}\}.$$

- (a) Prove that A = B.
- (b) Prove that $A \subseteq C$.
- 6. Suppose that **A** and **B** are square matrices with the property that AB = BA. Show that $AB^n = B^n A$ for every positive integer *n*.
- 7. (a) Give an example of a function from \mathbb{N} to \mathbb{N} that is one-to-one but not onto. Very briefly explain why your example is not onto (but no need to prove it is one-to-one).
 - (b) Prove or give a counterexample: Let f be a function from \mathbb{N} to \mathbb{N} ; if f is onto, then it is a bijection.
- 8. Show that these statements about the real number x are equivalent:
 - (i) x is rational,
 - (*ii*) x/2 is rational,
 - (*iii*) 3x 1 is rational.