BONUS QUIZ 5

Name: ________________________________

Date: ________________________________

Friday March 9
Ron Buckmire

Topic: Rank, Independence, Dimension and Basis

The idea behind this quiz is to provide you with an opportunity to illustrate your understanding of rank, span, independence and basis.

Reality Check:

EXPECTED SCORE : __________/10

ACTUAL SCORE : __________/10

Instructions:

0. Please look for a hint on this quiz posted to faculty.oxy.edu/ron/math/214/07/

1. Once you open the quiz, you have 30 minutes to complete, please record your start time and end time at the top of this sheet.

2. You may use the book or any of your class notes. You must work alone.

3. If you use your own paper, please staple it to the quiz before coming to class. If you don’t have a stapler, buy one. UNSTAPLED QUIZZES WILL NOT BE GRADED.

4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.

5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.

6. Relax and enjoy...

7. This quiz is due on Monday March 19, in class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I, ________________________________, pledge my honor as a human being and Occidental student, that I have followed all the rules above to the letter and in spirit.
EXPLAIN YOUR ANSWERS

Given \(A = \begin{bmatrix} 1 & 5 & 3 & 1 & 0 \\ -1 & -3 & 0 & 0 & 2 \\ 3 & -3 & 1 & -6 & 1 \\ 2 & -4 & -1 & -5 & 0 \end{bmatrix} \) with \(\text{rref}(A) = R = \begin{bmatrix} 1 & 0 & 0 & -1.5 & -0.5 \\ 0 & 1 & 0 & 0.5 & -0.5 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \)

Fill in the blanks. Write in explanations in the gaps between questions.

a. \(\text{col}(A) \) is a subspace of ________________.

b. The rank of the matrix \(A \) is ________________.

c. \(\text{null}(A) \) is a subspace of ________________.

d. The dimension of \(\text{col}(A) \) is ________________.

e. There are ________________ vectors in a basis of \(\text{row}(A) \).

f. \(\text{row}(A) \) is a subspace of ________________.

g. \(\text{null}(A) \) is spanned by the vectors ________________.

h. The span of the columns of \(R \) is all of \(\mathbb{R}^3 \) \hspace{1cm} \text{TRUE} \hspace{0.5cm} \text{or} \hspace{0.5cm} \text{FALSE} \hspace{0.5cm} (\text{circle one}).

i. \(A\vec{x} = \vec{b} \) will be solvable for any \(\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ 0 \end{bmatrix} \). \hspace{1cm} \text{TRUE} \hspace{0.5cm} \text{or} \hspace{0.5cm} \text{FALSE} \hspace{0.5cm} (\text{circle one}).

j. An example of a basis for \(\text{col}(A) \) is ________________.