$\mathbf{L i n e a r} \mathbf{S}_{\text {ystems }}$

Math 214 Spring 2006
© 2006 Ron Buckmire
Fowler 307 MWF 2:30pm - 3:25pm
http://faculty.oxy.edu/ron/math/214/06/

Class 22: Monday March 27

TITLE Determinants
CURRENT READING Poole 4.3

Summary

Let's explore the wonderful world of eigenvectors, eigenvalues and eigenspaces of a square $n \times n$ matrix.

Homework Assignment

Poole, Section 4.3: 4,5,10,15,16,17,18,20,21,23,33. EXTRA CREDIT 34,36,38.

DEFINITION

The eigenvalues of a square $n \times n$ matrix A satisfy the characteristic polynomial of the matrix A, given by $\operatorname{det}(A-\lambda I)=0$.

EXAMPLE

Find the eigenvalues and corresponding eigenspaces of the matrix $\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4\end{array}\right]$

DEFINITION

The algebraic multiplicity of an eigenvalue is the multiplicity of this eigenvalue as a root of the characteristic polynomial. The geometric muliplicity of an eigenvalue λ is the dimension of the corresponding eigenspace E_{λ}, i.e. the number of vectors in a basis for the eigenspace.

Exercise

Write down the algebraic and geometric multiplicity of the eigenvalues of the matrix $\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4\end{array}\right]$.

Theorem 4.15

The eigenvalues of a triangular matrix (lower triangular, upper triangular or diagonal) are simply the entries along its main diagonal.

Theorem 4.16

Let A be a square matrix with eigenvalue λ and eigenvector \vec{x}
(i) For any integer n, λ^{n} is an eigenvalue of A^{n} with correspnding eigenvector \vec{x}
(ii) If A is invertible, then $1 / \lambda$ is an eigenvalue of A^{-1} with corresponding eigenvector \vec{x}

Theorem 4.18

A square matrix A is invertible if and only if 0 is NOT an eigenvalue of A.
EXAMPLE
Poole, page 296, \#19. (a) Show that for any square matrix A, A^{T} and A have the same characteristic polynomial and thus the same eigenvalues.
(b) Give an example of a 2×2 matrix A for which A^{T} and A have different eigenspaces.

Exercise

Show that the eigenvalues $A=\left[\begin{array}{ll}3 & 2 \\ 5 & 0\end{array}\right]$ are 5 and -2 and $E_{-2}=\operatorname{span}\left(\left[\begin{array}{c}2 \\ -5\end{array}\right]\right)$ and $E_{5}=\operatorname{span}\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$

Find the eigenvalues of $3 A, A^{-1}, A^{2}$ and $A+I$

Linear Independence of Eigenvectors

Theorem 4.19

Suppose the $n \times n$ matrix A has m eigenvectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \ldots, \vec{v}_{m}$ with corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$. IF \vec{x} is a vector in \mathbb{R}^{n} that can be written as a linear combination of these vectors, THEN

$$
A^{k} \vec{x}=c_{1} \lambda_{1}^{k} \vec{v}_{1}+c_{2} \lambda_{2}^{k} \vec{v}_{2}+c_{3} \lambda_{3}^{k} \vec{v}_{3}+\ldots c_{m} \lambda_{m}^{k} \vec{v}_{m}
$$

EXAMPLE
Let's use this result to show that $\left[\begin{array}{ll}3 & 2 \\ 5 & 0\end{array}\right]^{6}\left[\begin{array}{l}1 \\ 8\end{array}\right]=\left[\begin{array}{l}46747 \\ 47195\end{array}\right]$

Theorem 4.20

Let A be an $n \times n$ matrix with m distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ and corresponding eigenvectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \ldots, \vec{v}_{m}$. Then $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \ldots, \vec{v}_{m}$ are linearly independent.
Properties of the Eigenvalues of a $n \times n$ Matrix
The Product of the eigenvalues equals the determinant of the $n \times n$ matrix.

$$
\lambda_{1} \lambda_{2} \lambda_{3} \ldots \lambda_{n}=|A|
$$

The Sum of the eigenvalues equals the trace of the $n \times n$ matrix (the sum of the diagonal entries)

$$
\lambda_{1}+\lambda_{2}+\lambda_{3}+\ldots+\lambda_{n}=\sum_{i=1}^{n} A_{i i}
$$

