$\mathbf{L}_{\text {inear }} \mathbf{S}_{\text {ystems }}$

Fowler 307 MWF $2: 30 \mathrm{pm}-3: 25 \mathrm{pm}$
http://faculty.oxy.edu/ron/math/214/06/

Class 11: Wednesday February 15

SUMMARY Matrix Algebraic Operations
CURRENT READING Poole 3.2

Summary

Let's do math with matrices. Yay. We'll summarize our knowledge of algebraic properties of matrices.

Homework Assignment

HW \# 11: Section 3.2: 1,2,3,4,5,14,24,37, 44; EXTRA CREDIT \# 45, 46 DUE FRI FEB 17

1. Algebraic Properties of Matrix Addition and Scalar Multiplication

Let A, B and C be matrices of size $m \times n$ and let O be the zero matrix of saize $m \times n$. Let c and d be scalars.
(1) $A+B=B+A$ (Commutativity of Addition)
(2) $A+O=A$ (Existence of Additive Identity)
(3) $A+(-A)=O$ (Existence of Additive Inverse)
(4) $c(A+B)=c A+c B$ (Distributivity of Scalar Multiplication)
(5) $(c+d) A=c A+d A$ (Distributivity of Scalar Addition)
(6) $(c d) A=c(d A)$ (Distributivity of Scalar Multiplication)

2. Algebraic Properties of Matrix Multiplication

(1) $A(B C)=(A B) C$ (Associativity of Matrix Multiplication)
(2) $A(B+C)=A B+A C$ (Distributivity of Left Matrix Multiplication)
(3) $(A+B) C=A C+B C$ (Distributivity of Right Matrix Multiplication)
(4) $k(A B)=(k A) B=A(k B)$ (Associativity of Scalar Multiplication)
(5) $I_{m} A=A=A I_{n}$ (Existence of Multiplicative Identity)
(6) $(c d) A=c(d A)$ (Distributivity of Scalar Multiplication)
(7) $1 A=A$ (Existence of Multiplicative Identity)

Exercise

Is $(A+B)^{2}=A^{2}+2 A B+B^{2}$ for all matrices A and B ? Prove your answer!

3. Linear Independence and Span With Matrices

Recall we previously defined the cpncets of linear independence and span involving vectors in \mathbb{R}^{n}. GroupWork
Write down a one sentence definition in YOUR OWN WORDS explaining linear independence and span.
Linear Independence

Span

EXAMPLE
Consider $A_{1}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right], A_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $A_{3}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. Are these matrices linearly independent? What is the span of these matrices?

