## $\mathbf{L i n e a r} \mathbf{S}_{\text {ystems }}$

Fowler 307 MWF 2:30pm - 3:25pm
http://faculty.oxy.edu/ron/math/214/06/

## Class 5: Wednesday February 1

## SUMMARY Understanding Linear Systems of Equations

CURRENT READING Poole 2.1

## OUTLINE

Today we will discover different ways of looking at linear systems and discover an interesting fact common to all linear systems.

## Homework Assignment

HW \#5: Section 1.3: 7, 14, 18, 27, 29; EXTRA CREDIT 25: DUE FRI FEB 3

Consider the vectors $\vec{v}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\vec{w}=\left[\begin{array}{l}1 \\ 5\end{array}\right]$
One of the central ideas of this Linear Systems course concerns Linear Combinations of Vectors.

One of the basic questions is when does a linear combination of vectors equal another vector? In other words, can you find a linear combination of $\vec{v}$ and $\vec{w}$ such that

$$
c \vec{v}+d \vec{w}=\left[\begin{array}{l}
6 \\
2
\end{array}\right] ?
$$

OR

$$
c \vec{v}+d \vec{w}=\left[\begin{array}{l}
7 \\
7
\end{array}\right] ?
$$

OR

$$
c \vec{v}+d \vec{w}=\text { any } 2 \mathrm{x} 1 \text { vector } ?
$$

NOTE: If we take ALL linear combinations of $\vec{v}$ and $\vec{w}$ we can produce every vector in the entire plane.
What's the relationship between this and solving systems of equations? We could write the problem above as a linear system
$3 c+d=7$
$c+5 d=7$
(row form)
OR
$c\left[\begin{array}{l}3 \\ 1\end{array}\right]+d\left[\begin{array}{l}1 \\ 5\end{array}\right]=\left[\begin{array}{l}7 \\ 7\end{array}\right]$
(column form)

## GroupWork

Solve one of the following systems of equations.
System A.

$$
\begin{aligned}
2 x-y & =1 \\
-4 x+2 y & =2
\end{aligned}
$$

System B.

$$
\begin{array}{r}
2 x-y=1 \\
-4 x+y=2
\end{array}
$$

## System C.

$$
\begin{aligned}
2 x-y & =1 \\
-6 x+3 y & =-3
\end{aligned}
$$

Let's graph each of the above systems of equations on the $x y$-plane below.
Q: Before doing so, what do you expect to see? What do you see?


1. Algebraic and Geometric Interpretations of Linear Systems

$$
\begin{aligned}
4 x-y & =4 \\
2 x-3 y & =-5
\end{aligned}
$$

The above is called the row form of the system of equations.
Geometrically, the row form can be viewed as:

$$
x\left[\begin{array}{l}
4 \\
2
\end{array}\right]+y\left[\begin{array}{l}
-1 \\
-3
\end{array}\right]=\left[\begin{array}{c}
4 \\
-5
\end{array}\right]
$$

The above is called the column form of the system of equations.
Geometrically, the column form can be viewed as:

$$
\left[\begin{array}{ll}
4 & -1 \\
2 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
4 \\
-5
\end{array}\right]
$$

The above is called the matrix form of the system of equations.
Geometrically, the matrix form can be viewed as:

## Warm-up

Consider 2 random lines in 2-dimensional space (the regular Cartesian plane). What are the possible scenarios these two random lines can produce? Draw pictures below:

Consider 2 random planes in 3-dimensional space. What are the possible scenarios these 2 random planes can produce? Write them down below.

Consider 3 random planes in 3-dimensional space. What are the possible scenarios these 3 planes can produce? Write them below.

## DISCUSSION

What is the connection between the above scenarios and the question of when a linear system of equations has a unique solution? Or no solution?

## DEFINITION: consistent

If a system of linear equations has at least one solution then it is called a consistent linear system. Otherwise, it is called an inconsistent linear system.

## DEFINITION: singular

If a system of linear equations does not have a unique solution then it is called a singular linear system. Otherwise, it is called an non-singular linear system.

