Linear Systems

Math 214 Spring 2006 ©2006 Ron Buckmire Fowler 307 MWF 2:30pm - 3:25pm http://faculty.oxy.edu/ron/math/214/06/

Class 1: Monday January 23

SUMMARY Scalars and Vectors **CURRENT READING** Poole 1.1 and 1.2

INTRO

In today's class we review the concepts of vectors and scalars. In addition, we introduce the central idea of a **linear combination** of vectors.

Homework Assignment #1 Section 1.1 # 1d, 2d, 3c, 4c, 5a, 6, 9, **11, 15, 17, 20** : DUE WED JAN 25 EXTRA CREDIT #14

What is a vector?

Roughly speaking, a vector is just a "bunch of numbers"! More precisely, a vector is an *ordered set of numbers*.

Example 1. [2 0] is a vector; [0 2] is also; these are two different vectors, since order matters.

 $\begin{bmatrix} 2 & -5 & 7.1 \end{bmatrix}$ is a row vector; $\begin{bmatrix} 2 \\ -5 \\ 7.1 \end{bmatrix}$ is a column vector.

Q: What's the difference between a row vector and a column vector?

Note. To save space, we sometimes write (4, 0, -8) instead of $\begin{bmatrix} 4\\0\\-8 \end{bmatrix}$. So (4, 0, -8) is a column vector.

Each number in the vector is called a **component** of the vector. **Q:** what's the second component of the vector [3 6 0]? **Ans:**

Vectors are used to represent many different things!

Example 2. Start from home. Drive 6 miles East, 2 miles North. Represent this by the vector [6–2]. Then continue driving 3 miles East, 5 miles South. Represent this by [3 -5]. **Q:** Where are we relative to home? **Ans:** Add the two vectors: $[6 \ 2] + [3 \ -5] = [9 \ -3]$.

(Draw picture)

• We add vectors component-wise: one component at a time.

Example 3. I have 4 nickels, 3 dimes, and 2 quarters. You give me 3 nickels and 1 dime, and take 1 quarter. So I'm left with: $\begin{bmatrix} 4 & 3 & 2 \end{bmatrix} + \begin{bmatrix} 3 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 7 & 4 & 1 \end{bmatrix}$.

Note. The book uses boldface letters for vectors. It is difficult to *write* in boldface. So instead we'll use "arrow notation" for vectors:

Book: Let $\mathbf{v} = [4 \ 3]$. Let $\mathbf{w} = [5 \ 3]$. Then $\mathbf{v} + \mathbf{w} = ?$ Us: Let $\vec{v} = [4 \ 3]$. $\vec{w} = [5 \ 3]$. Then $\vec{v} + \vec{w} = ?$ *Example* 4. $[4 \ 2] + [3 \ 1 \ -1] =?$ **Ans:** Undefined.

Vectors of different size can NOT be added to each other.

Multiplying a vector by a number: scalars

What's 5+5+5+5+5=?What's $[5 \ 3] + [5 \ 3] + [5 \ 3] + [5 \ 3] + [5 \ 3] + [5 \ 3] =?$ So, what's $6[5 \ 3] =?$ **Ans:**

Here the number 6 is called a **scalar**. Why? Because if you draw both vectors, [5 3] and [30 18], on two separate xy-planes, they'll have different lengths but the same direction (slope): we're only changing the "scale on our map" to make one vector look like the other.

Subtracting vectors

Example 5. Let $\vec{v} = [4 \ 3]$. $\vec{w} = [5 \ 3]$. Then $\vec{v} - \vec{w} = ?$ Ans: $[-1 \ 0]$.

How can we represent vector subtraction pictorially?

Step 1. Draw \vec{v} . Step 2. Multiply \vec{w} by -1. Step 3. Add $-\vec{w}$ to \vec{v} .

Linear Combinations

Example 6. Find a and b such that a[5 3] + b[3 2] = [0 1].

Ans: Solve two equations with two unknowns: 5a + 3b = 0 3a + 2b = 1. We get: a = -3, b = 5.

So $(-3)[5 \ 3] + (5)[3 \ 2] = [0 \ 1]$. We say $[0 \ 1]$ is a *linear combination* of $[5 \ 3]$ and $[3 \ 2]$. (Books sometimes just say combination, instead of linear combination.)

Definition 1. Let $\vec{v_1}, \dots, \vec{v_n}$ be vectors. To say a vector \vec{w} is a **linear combination** of $\vec{v_1}, \dots, \vec{v_n}$ means there exist scalars $c_1, \dots, c_n \in \mathbb{R}$ such that $c_1\vec{v_1} + \dots + c_n\vec{v_n} = \vec{w}$. The numbers c_1, \dots, c_n are called **coefficients**.

Example 7. Is $\begin{bmatrix} 5 & 6 & 0 \end{bmatrix}$ a linear combination of $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 3 & 0 \end{bmatrix}$, and $\begin{bmatrix} 0 & 0 & 8 \end{bmatrix}$? Ans:

Example 8. Is $\begin{bmatrix} 5 & 6 & 0 \end{bmatrix}$ a linear combination of $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 3 & 0 \end{bmatrix}$, and $\begin{bmatrix} 0 & 0 & 8 \end{bmatrix}$? Ans:

Example 9. What are all possible lin combs of $\begin{bmatrix} 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 \end{bmatrix}$? Ans:

Example 10. What are all possible lin combs of $\begin{bmatrix} 1 & 1 \end{bmatrix}$ and $\begin{bmatrix} 2 & 2 \end{bmatrix}$? Ans: