Quiz 10	Linear Systems
Name:	
Date: Time Begun: Time Ended:	Wednesday April 12 Ron Buckmire
Topic: Orthogonality	
The idea behind this quiz is for you to indica complements.	te your understanding of orthogonality and orthogonal
Reality Check:	
EXPECTED SCORE :/10	ACTUAL SCORE :/10
Instructions:	
1. Please look for a hint on this quiz poste	d to faculty.oxy.edu/ron/math/214/06/
2. You may use the book or any of your cl	ass notes. You must work alone.
	it to the quiz before coming to class. If you don't have NSTAPLED SHEETS WILL NOT BE GRADED.
4. After completing the quiz, sign the pleds to these rules.	ge below stating on your honor that you have adhered
5. Your solutions must have enough details and determine HOW you came up with	s such that an impartial observer can read your work your solution.
6. Relax and enjoy	
7. This quiz is due on Monday April WILL BE ACCEPTED.	17, in class. NO LATE OR UNSTAPLED QUIZZES
Pledge: I,, pledge that I have followed all the rules above to the	ge my honor as a human being and Occidental student,

Goal: To project $\vec{v} = \begin{bmatrix} 1 \\ 5 \\ 0 \end{bmatrix}$ onto the orthogonal complement of the plane x - y + 3z = 0 (denoted by \mathcal{W}) in \mathbb{R}^3 .

- (a) (2 points). If the set of points (x, y, z) in \mathbb{R}^3 are represented as the vector $\vec{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, the set of points on the plane x y + 3z = 0 can be represented as the vectors found in the nullspace of what matrix? (Re-write x y + 3z = 0 as $A\vec{x} = 0$ and identify A and list its dimensions).
- (b) (2 points). Since the plane x y + 3z = 0 is a 2-dimensional object and given that the rank of the matrix A is 1, write down a basis for null(A) which contains 2 vectors.

- (c) (2 points). Using the Rank Theorem, write down a basis for the orthogonal complement of the nullspace of A. (HINT: what is the dimension of this orthogonal complement?)
- (d) (2 points). Your answer in (c) is a basis for the orthogonal complement of the nullspace of A, in other words W^{\perp} . Find $\vec{w}_1 = \operatorname{proj}_{W^{\perp}}(\vec{v})$
- (d) (2 points). Use your answer to find $\vec{w}_2 = \text{proj}_{\mathcal{W}}(\vec{v})$. What properties do \vec{w}_1 and \vec{w}_2 have that you can check to confirm your answers?