Multivariable Calculus

Math 212 Spring 2015
(c) (Br) (3) Ron Buckmire

Fowler 309 MWF 9:35am - 10:30am http://faculty.oxy.edu/ron/math/212/15/

Worksheet 29

TITLE The Last Day of Class!
CURRENT READING McCallum, Chapter 12, Chapter 13, Chapter 14, Chapter 15, Chapter 16 (Not 16.6), Chapter 17 (Not 17.4), Chapter 18, Section 19.3 and Section 20.1

SUMMARY

This worksheet reviews the concepts that you need to be responsible for on the Final Exam.
Here are the titles of the Worksheets in this class.

Worksheet 1 Introduction to Vectors (Notation and Terminology)
Worksheet 2 The Dot Product and Vector Equations of Lines and Planes
Worksheet 3 Vector Projection and the Vector Cross Product
Worksheet 4 Functions, Vector Functions, and $f(x, y)$ as surfaces
Worksheet 5 Cross-Sections and Level Sets
Worksheet 6 Limits of Multivariable Functions
Worksheet 7 The Partial Derivative
Worksheet 8 The Tangent Plane, Differentials, and Linear Approximations
Worksheet 9 The Directional Derivative and the Gradient Vector
Worksheet 10 The Gradient Vector in \mathbb{R}^{3}
Worksheet 11 The Chain Rule
Worksheet 12 Second-Order Partial Derivatives
Worksheet 13 Review for Exam 1
Worksheet 14 Differentiability of a Multivariable Function
Worksheet 15 Local Extrema of a Multivariable Function
Worksheet 16 (Unconstrained) Optimization of a Multivariable Function
Worksheet 17 Multivariable Constrained Optimization (Using Lagrange Multipliers)
Worksheet 18 (Integration of a Multivariable Function
Worksheet 19 Iterated Integration
Worksheet 20 Triple Integrals
Worksheet 21 Evaluating Multiple Integrals Using Other Coordinate Systems
Worksheet 22 The Calculus of Curves In Space
Worksheet 23 Review for Exam 2
Worksheet 24 Vector Fields and Line Integrals
Worksheet 25 Gradient Fields and Path-independent Vector Fields
Worksheet 26 Green's Theorem and the Scalar Curl
Worksheet 27 The Divergence and Curl and Introduction To Vector Calculus
Worksheet 28 The Three Fundamental Theorems of Vector Calculus
Here are the list of in-class activities
Surface Activity 1 The Surface (Functions of Two Variables)
Surface Activity 2 The Park (Level Sets)
Supplemental Activity Matching Contours and Surfaces
Surface Activity 3 The Roller Coaster (Lagrange Multipliers)

Here are the titles of the Take-Home Quizzes in the class
Quiz 1 Vectors and Lines in \mathbb{R}^{4}
Quiz 2 Planes and the Cross Product
Quiz 3 Visualizing Multivariable Function (Using Slices)
BONUS 1 Application of Projections: Distace Between Planes
Quiz 4 Application of Partial Derivatives: Tangent Plane
Quiz 5 The Gradient Vector and the Directional Derivative
Quiz 6 The Multivariable Chain Rule
Quiz 7 Unconstrained Multivariable Optimization
BONUS 2 Multivariable Optimization Using Lagrange Multipliers
Quiz 8 Constrained Multivariable Optimization
BONUS 3 Using Fubini's Theorem in Iterated Integration
Quiz 9 Double and Triple Integrals
Quiz 10 Line Integrals and Gradient Fields
Quiz 11 Green's Theorem
Here are the sections of the book we have covered in the class, Calculus : Multivariable (6th Edition) by McCallum et al.

Section 12.1 Functions of Two Variables
Section 12.2 Graphs and Surfaces
Section 12.3 Contour Diagrams
Section 12.4 Linear Functions
Section 12.5 Functions of Three Variables
Section 12.6 Limits and Continuity
Section 13.1 Displacement Vectors
Section 13.2 Vectors in General
Section 13.3 The Dot Product
Section 13.4 The Cross Product
Section 14.1 The Partial Derivative
Section 14.2 Computing Partial Derivatives Algebraically
Section 14.3 Local Linearity and the Differential
Section 14.4 Gradients and Directional Derivatives in the Plane
Section 14.5 Gradients and Directional Derivatives in Space
Section 14.6 The Chain Rule
Section 14.7 Second-Order Partial Derivatives
Section 14.8 Differentiability
Section 15.1 Critical Points
Section 15.2 Optimization
Section 15.3 Constrained Optimization: Lagrange multipliers
Section 16.1 Definite Integral Of A Function of Two Variables
Section 16.2 Iterated Integrals
Section 16.3 Triple Integrals
Section 16.4 Double Integrals in Polar Coordinates
Section 16.5 Integrals in Cylindrical or Spherical Coordinates
Section 17.1 Parametrized Curves
Section 17.2 Motion, Velocity and Acceleration
Section 17.3 Vector Fields
Section 18.1 The Idea of a Line Integral
Section 18.2 Computing Line Integral Over Parametrized Curves
Section 18.3 Gradient Fields and Path-Independent Fields
Section 18.4 Green's Theorem and Path-dependent Fields
Section 19.3 The Divergence of a Vector Field
Section 20.1 The Curl of a Vector Field

Grouphork

What topic(s) are the most unclear right now? Which topic(s) are you most confident about?

