Multivariable Calculus

Math 212 Spring 2015

(C) (30)
 Ron Buckmire

Fowler 309 MWF 9:35am - 10:30am http://faculty.oxy.edu/ron/math/212/15/

Worksheet 21

TITLE Evaluating Multiple Integrals Using Other Coordinate Systems
CURRENT READING McCallum, Section 16.4-16.5, 21.2
HW \#9 (DUE TUESDAY 4/7/15 5PM)
McCallum, Section 16.3: 2, 5, 6, 28, 39, 40, 41, 42, 54*,55*.
McCallum, Chapter 16.4: 3, 7, 8,17, 20, 22.
McCallum, Chapter 16.5: 12, 13, 14, 15, 21, 22, 23, 63*, 73.
McCallum, Chapter 16 Review: 1, 4, 10, 11, 12, 14, 20, 23, 55*, 56*.

SUMMARY

This worksheet discusses how to compute iterated integrals in other coordinate systems, namely polar coordinates, spherical coordinates and cylindrical coordinates.

RECALL Points in the $x y$-plane can also be represented by a different coordinate system, called polar coordinates where $r=\sqrt{x^{2}+y^{2}}$ and $\theta=\arctan (y / x)$. In other words,

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

The Double Integral In Polar Coordinates

Consider the following integral

$$
\begin{equation*}
\int_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r, \theta) r d r d \theta \tag{1}
\end{equation*}
$$

NOTE

Note that the $d A$ which in regular Cartesian coordinates is either $d x d y$ or $d y d x$ becomes $r d r d \theta$ NOT simply $d r d \theta$!

Some problems are easier to do in polar coordinates than cartesian coordinates!

EXAMPLE

Evaluate $\int_{D} \cos \left(x^{2}+y^{2}\right) d A$ where D is the disk (i.e. interior and boundary) of radius $\sqrt{\pi / 2}$ centered at $(0,0)$.

THEOREM

Jacobi's Theorem for Transforming Integrals Between Coordinate Systems

The integral of a continuous function $f(\vec{x})$ over a region \mathcal{W} in \mathbb{R}^{n} can be transformed into an equivalent integral of $f\left(\vec{T}(\vec{x})\right.$) in a region \mathcal{W}^{*} where \vec{T} is a continuously differentiable transformation that maps \mathcal{W} to \mathcal{W}^{*}, i.e. $\mathcal{W}^{*}=T(\mathcal{W})$.
In other words, suppose in \mathbb{R}^{3} that $\vec{T}(\vec{x})=\left[\begin{array}{l}u(x, y, z) \\ v(x, y, z) \\ w(x, y, z\end{array}\right]$ so that
$\iiint_{W} f(x, y, z) d x d y d z=\iiint_{W^{*}} f(x(u, v, w), y(u, v, w), z(u, v, w))\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w$ in \mathbb{R}^{3} and in $\mathbb{R}^{2} \vec{T}(\vec{x})=\left[\begin{array}{l}u(x, y) \\ v(x, y)\end{array}\right]$ so that

$$
\iint_{W} f(x, y) d x d y=\iint_{W^{*}} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v \text { in } \mathbb{R}^{2}
$$

The expressions $\left|\frac{\partial(x, y)}{\partial(u, v)}\right|$ and $\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right|$ are called the Jacobian of the transformation. In actuality they are the determinant of the Jacobian matrix associated with the transformation.

DEFINITION: The Jacobian Matrix

The Jacobian matrix of a function $\vec{f}(\vec{x})$ is a matrix where the term in the $i^{\text {th }}$ row and $j^{\text {th }}$ column is the expression $\frac{\partial f_{i}}{\partial x_{j}}$ where f_{i} is the $i^{\text {th }}$ component of the vector function $\vec{f}(\vec{x})$ and x_{j} is the $j^{\text {th }}$ component of the vector variable \vec{x}.
The Jacobian matrix for \vec{T} in \mathbb{R}^{3} and \mathbb{R}^{2} respectively is given below

$$
\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right|=\left[\begin{array}{ccc}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}
\end{array}\right] \quad\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left[\begin{array}{cc}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right]
$$

CONCEPTUAL UNDERSTANDING

Generally, we use Jacobi's theorem to convert from Cartesian coordinates to polar, spherical, and cylindrical co-ordinates.

Change of Variables: Polar Coordinates

$$
\iint_{D} f(x, y) d x d y=\iint_{D^{*}} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Change of Variables: Cylindrical Coordinates

$$
\iiint_{W} f(x, y, z) d x d y d z=\iiint_{W^{*}} f(r \cos \theta, r \sin \theta, z) r d r d \theta d z
$$

Change of Variables: Spherical Coordinates

$$
\iiint_{W} f(x, y, z) d x d y d z=\iiint_{W^{*}} f(r \sin \phi \cos \theta, r \sin \phi \sin \theta, r \cos \phi) r^{2} \sin \phi d r d \theta d \phi
$$

Visualizing The Area Differential In Polar Coordinates

y

The area of the segment of the circular arc of radius r of angular width $\Delta \theta$ and length Δr is $\Delta A \approx(r \Delta \theta)(\Delta r)$

EXAMPLE
We can use the Jacobian of the transformation from Cartesian coordinates (x, y) to polar coordinates (r, θ) to explain why $d x d y=r d r d \theta$.
Let $\vec{T}(\vec{x})=\left[\begin{array}{c}x(r, \theta) \\ y(r, \theta)\end{array}\right]$ where $x(r, \theta)=r \cos \theta$ and $y(r, \theta)=r \sin \theta$ and compute $\left|\frac{\partial(x, y)}{\partial(r, \theta)}\right|$

Exercise

McCallum, page 893, Example 3. For each of the regions below decide whether to integrate using polar or Cartesian coordinates. Write down an iterated integral of an arbitrary function $f(x, y)$ over the given region.
(a) y

(b)

(c)

(d)
y

Cylindrical Coordinates

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=z \\
& 0 \leq r<\infty,-2 \pi \leq \theta \leq 2 \pi,-\infty<z<\infty \\
& r^{2}=x^{2}+y^{2}
\end{aligned}
$$

Spherical Coordinates

$x=\rho \sin \phi \cos \theta$
$y=\rho \sin \phi \sin \theta$
$z=\rho \cos \theta$
$0 \leq \rho<\infty,-2 \pi \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi$ $\rho^{2}=x^{2}+y^{2}+z^{2}$

Visualizing The Volume Differential In Cylindrical Coordinates and Spherical Coordinates

$\Delta v \approx r \Delta r \Delta z \Delta \theta$

$\Delta V \approx \rho^{2} \sin \phi \Delta \rho \Delta \theta \Delta \phi$

EXAMPLE

McCallum, page 903, Exercise 19. Write a triple integral in cylindrical coordinates giving the volume of a sphere of radius K centered at the origin. Use the order $d z d r d \theta$.

Evaluate the triple integral to show the volume of the sphere of radius K is $\frac{4}{3} \pi K^{3}$.

Exercise

McCallum, page 903, Exercise 20. Write a triple integral in spherical coordinates giving the volume of a sphere of radius K centered at the origin. Use the order $d \theta d \rho d \phi$.

Evaluate the triple integral to show the volume of the sphere of radius K is $\frac{4}{3} \pi K^{3}$.

GROUPWORK

McCallum, page 903, Exercise 24-25.
Use (a) Cartesian (b) Cylindrical (c) Spherical coordinates to write down the limits of integration for $\int_{W} d V$ for the following figures.
24. One-eighth of the sphere with unit radius centered at the origin (occupying the positive x, y and z quadrants)
25. The shape formed by a cone with 90° vertex at the origin topped by the sphere of radius 1 centered at the origin. (Sort of looks like an ice-cream cone.)

