Multivariable Calculus

Math 212 Spring 2015
(c)2015 Ron Buckmire

Fowler 309 MWF 9:35am - 10:30am
http://faculty.oxy.edu/ron/math/212/15/

Worksheet 20

TITLE Triple Integrals
CURRENT READING McCallum, Section 16.3
HW \#8 (DUE Wednesday 04/01/15 5PM)
McCallum, Section 16.1: 2, 4, 6, 7, 8, 14, 22, 23..
McCallum, Chapter 16.2: 1, 3, 4, 7, 11, 13, 14, 16, 18, 19, 23, 33, 34, 37, 38, 43, 50.

SUMMARY

This worksheet discusses ultimate iterated integral; the triple integral! We shall learn the importance of being able to describe a volume in \mathbb{R}^{3} multiple ways.

QUESTION: How would one evaluate the integral $\int_{0}^{x} \int_{0}^{1} y^{2} x d x d y$?

The Triple Integral

Consider the following integral

$$
\int_{p}^{q} \int_{c}^{d} \int_{a}^{b} f(x, y, z) d x d y d z
$$

You evaluate this integral from the "inside" (the $d x$ integral) out (the $d z$ integral), treating the other variables as constants. So, for the $d x$ integral z and y are constants and for the $d y$ integral the z is a constant and the last integral (leftmost) must have only constants as limits. Always remember that a definite integral, even a triple integral represents a number.

NOTE

- The limits for the outer integral can only involve constants.
- The limits for the middle integral can involve only one variable (the variable that is in the outer limit)
- The limits for the inner integral can involve two variables (those from the two outer integrals)
- There are six different possible arrangements of the variables $d x d y d z, d x d z d y, d z d y d x$, $d z d x d y, d y d x d z$, and $d y d z d x$. Fubini's Theorem applies to all 6!

EXAMPLE

Evaluate $\int_{0}^{1} \int_{2}^{4} \int_{-2}^{1} x y z d x d y d z$

THEOREM

Fubini's Theorem for Triple Integrals

The integral of a continuous function $f(x, y, z)$ over the rectangular volume $\mathcal{R}=[a, b] \times[c, d] \times$ [$p, q]$ is equal to the iterated integral (computed in any order).

$$
\begin{aligned}
\int_{p}^{q} \int_{c}^{d} \int_{a}^{b} f(x, y, z) d x d y d z & =\int_{p}^{q} \int_{a}^{b} \int_{c}^{d} f(x, y, z) d y d x d z=\int_{a}^{b} \int_{p}^{q} \int_{c}^{d} f(x, y, z) d y d z d x \\
& =\int_{a}^{b} \int_{c}^{d} \int_{p}^{q} f(x, y, z) d z d y d x=\int_{c}^{d} \int_{a}^{b} \int_{p}^{q} f(x, y, z) d z d x d y \\
& =\int_{c}^{d} \int_{p}^{q} \int_{a}^{b} f(x, y, z) d x d z d y
\end{aligned}
$$

GROUPWORK

McCallum, page 832, Example 3.
Evaluate the integral $\int_{0}^{1} \int_{2}^{4} \int_{-2}^{1} x y z d x d y d z$ in at least two different ways and show that you get the same answer regardless of order of integration. (Thank Fubini!)

Integration Of A Function Over A Solid Region With Non-Rectangular Base Let \mathcal{W} be the region in \mathbb{R}^{3} bounded by the curves $z=4-y^{2}, y=2 x$ and $z=0$ and $x=0$. We can re-write the triple integral representing the volume of this region three different ways, by projecting on to the $x y$-plane, or the $x z$-plane or the $y z$-plane.

METHOD 1: $x y$-plane
The projection of the region \mathcal{W} in the $x y$-plane means that $z=0$, so it looks like $0 \leq x \leq 1$ and $2 x \leq y \leq 2$. With the $x y$-plane as a base, z varies from $z=0$ to $z=4-y^{2}$.

$$
\text { Volume }=\int_{x=0}^{1} \int_{y=2 x}^{2} \int_{z=0}^{4-y^{2}} 1 d z d y d x
$$

METHOD 2: $y z$-plane
The projection of the region \mathcal{W} in the $y z$-plane means that $x=0$, so it looks like $0 \leq y \leq 1$ and $0 \leq z \leq 4-y^{2}$. With the $y z$-plane as a base, x varies from $x=0$ to $x=y / 2$, since we knew that $y=2 x$ was a boundary of \mathcal{W}.

$$
\text { Volume }=\int_{y=0}^{2} \int_{z=0}^{4-y^{2}} \int_{x=0}^{y / 2} 1 d x d z d y
$$

METHOD 3: The $x z$-plane
The projection of the region \mathcal{W} in the $x z$-plane means that $y=0$. But it also means we have to figure what happens to the $z=4-y^{2}$ curve when it gets projected onto the $x z$-plane. Since we know $y=2 x$, this means that $z=4-(2 x)^{2}=4-4 x^{2}$, so it looks like in the $x z$-plane $0 \leq x \leq 1$ and $0 \leq z \leq 4-4 x^{2}$. With the $x z$-plane as a base, we need to figure out how y varies with x and z. But since $z=4-y^{2}$ that means that $y= \pm \sqrt{4-z}$ which since we are looking at the region above the $x z$-plane means we take the positive square root.

$$
\text { Volume }=\int_{x=0}^{1} \int_{z=0}^{4-4 x^{2}} \int_{y=2 x}^{\sqrt{4-z}} 1 d y d z d x
$$

EXAMPLE

Let's compute the first of these integrals to find the volume of the given shape.
$\int_{y=0}^{2} \int_{z=0}^{4-y^{2}} \int_{x=0}^{y / 2} 1 d x d z d y$

Exercise

You should evaluate at least one of the other integrals to show that you get the same answer.
$\int_{x=0}^{1} \int_{z=0}^{4-4 x^{2}} \int_{y=2 x}^{\sqrt{4-z}} 1 d y d z d x$

$$
\int_{x=0}^{1} \int_{y=2 x}^{2} \int_{z=0}^{4-y^{2}} 1 d z d y d x
$$

