Multivariable Calculus

Math 212 Spring 2015
(c)2015 Ron Buckmire

Fowler 309 MWF 9:35am - 10:30am
http://faculty.oxy.edu/ron/math/212/15/

Worksheet 18

TITLE Integration of a Multivariable Function $f(x, y)$
CURRENT READING McCallum, Section 16.1-16.2
HW \#8 (DUE Wednesday 04/01/15 5PM)
McCallum, Section 16.1: 2, 4, 6, 7, 8, 14, 22, 23..
McCallum, Chapter 16.2: 1, 3, 4, 7, 11, 13, 14, 16, 18, 19, 23, 33, 34, 37, 38, 43, 50.

SUMMARY

This worksheet discusses the concept of the integral of a surface $f(x, y)$ over a region R, known as a double integral which may be used to compute areas and/or volumes.

The Definite Integral $\int_{a}^{b} f(x) d x$

RECALL

Given a function $f(x)$ defined on an interval $a \leq x \leq b$ the definite integral $\int_{a}^{b} f(x) d x$ can be defined as

$$
\int_{a}^{b} f(x) d x=\lim _{\max \Delta x_{k} \rightarrow 0} \sum_{k=1}^{N} f\left(x_{k}\right) \Delta x_{k}
$$

CONCEPT

The definite integral can be approximated by the limit of the Riemann sums and represents the signed area "under" a curve $y=f(x)$. You can think of this conceptually as a number of rectangles representing the area which in the limit as the width of the rectangles goes to zero (and the number of rectangles goes to infinity) becomes a finite number which is exactly the value of the area.

EXAMPLE

Draw a picture representing the right-hand Riemann sum approximations of the integral of the function $f(x)=x^{2}+1$ over the interval $0 \leq x \leq 3$.

Exercise

What is the average value of the function $f(x)=x^{2}+1$ over the interval $0 \leq x \leq 3$?

The Double Integral $\iint_{\mathcal{R}} f(x, y) d A$
The double integral of $f(x, y)$ over the rectangular region \mathcal{R} is defined as

$$
\iint_{\mathcal{R}} f(x, y) d A=\lim _{\max \Delta A_{i j} \rightarrow 0} \sum_{i=1}^{M} \sum_{j=1}^{N} f\left(x_{i j}, y_{i j}\right) \Delta A_{i j}
$$

OR

$$
\iint_{\mathcal{R}} f(x, y) d A=\lim _{M, N \rightarrow \infty} \sum_{i=1}^{M} \sum_{j=1}^{N} f\left(x_{i}, y_{j}\right) \Delta x_{i} \Delta y_{j}
$$

CONCEPT

The double integral can be thought of as the three-dimensional analogue to the limit of the Riemann Sums in the single-variable definite integral. This time the double integral is approximated by boxes which have bases of area $\Delta x_{i} * \Delta y_{j}$ and height equal to $f\left(x_{i}, y_{j}\right)$. As the number of boxes becomes infinitely large and the area of the base of each box $A_{i j}$ goes to zero then if the limit exists then we say the function $f(x, y)$ is integrable and the integral represents the volume under the surface $f(x, y)$ above the region \mathcal{R}.
A visualization of this concept is depicted in the figure below.

The Double Integral Can Represent Volume
If the function $z=f(x, y)$ is always positive over the specific region \mathcal{R} then the double integral can represent volume.

$$
\iint_{\mathcal{R}} f(x, y) d A=\text { Volume under } f \text { above the region } \mathcal{R}
$$

The Double Integral Can Represent Area

If the function $f(x, y)=1$ then the double integral can represent area.

$$
\iint_{\mathcal{R}} f(x, y) d A=\iint_{\mathcal{R}} 1 d A=\text { Area of Region } \mathcal{R}
$$

Using an idea from single-variable Calculus, the average value \bar{f} of a function over a particular region \mathcal{R} can be found:

$$
\bar{f}=\frac{1}{\text { Area of Region } \mathcal{R}} \iint_{\mathcal{R}} f(x, y) d A=\text { Average value of } f \text { Over Region } \mathcal{R}
$$

