Multivariable Calculus

Math 212 Spring 2015
(c)2015 Ron Buckmire

Fowler 309 MWF 9:35am - 10:30am http://faculty.oxy.edu/ron/math/212/15/

Worksheet 13

TITLE Second Order Partial Derivatives
CURRENT READING McCallum, Section 14.7
HW \#6 (DUE WEDNESDAY 03/18/15)
McCallum, Section 14.6: 4, 11, 12, 26, 34, 35, 47*.
McCallum, Section 14.7: 6, 7, 8, 12, 19, 24, 30, 31,41*.
McCallum, Section 14.8: 3, 12, 19*.
McCallum, Chapter 14 Review: 2, 14, 35, 45, 64*.

SUMMARY

This worksheet discusses higher order partial derivatives of multivariable functions and introduces the concept of the mixed partial derivative.

RECALL: second derivative

Given an infinitely differentiable function $y=f(x)$ its derivative $f^{\prime}(x)$ represents the slope of the graph of the function at any point and $f^{\prime \prime}(x)$ represents the concavity of the graph. Also, $f^{\prime}(x)$ represents the instantaneous rate of change of $f(x)$ at a point while $f^{\prime \prime}(x)$ represents the instantaneous rate of change of $f^{\prime}(x)$.

The Second-Order Partial Derivatives of $f(x, y)$

DEFINITION: $f_{x x}, f_{x y}, f_{y y}$ and $f_{y x}$
Given a function $z=f(x, y)$ with continuous partial derivatives we can not only find the rate of change with f with respect to x and the rate of change of f with respect to y but the rate of change of those functions with respect to x and y also!

$$
\begin{aligned}
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right) & =\left(f_{x}\right)_{x}=f_{x x} \text { and } \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\left(f_{x}\right)_{y}=f_{x y} \\
\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right) & =\left(f_{y}\right)_{y}=f_{y y} \text { and } \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\left(f_{y}\right)_{x}=f_{y x}
\end{aligned}
$$

These expressions above are referred to as the second order partial derivatives of $f(x, y)$ EXAMPLE
McCallum, page 812, Exercise 4.
Compute the four second-order partial derivatives of $f(x, y)=e^{2 x y}$

When Mixed Partial Derivatives Are Equal

THEOREM

(Clairault's Theorem) If $f_{y x}$ and $f_{x y}$ are continuous at some point (a, b) found in a disc $(x-a)^{2}+$ $(y-b)^{2} \leq D$ for some $D>0$ on which $f(x, y)$ is defined, then $f_{x y}(a, b)=f_{y x}(a, b)$.

Applications of the Second-Order Partial Derivatives

Recall (from Worksheet \#8) that the local linearization of a function $f(x, y)$ near the point (a, b) is given by the tangent plane

$$
\begin{equation*}
f(x, y) \approx P(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) \tag{1}
\end{equation*}
$$

Taylor Polynomial Approximations

Note that the expression on the right hand side of (1) can be thought of as Taylor Polynomial of Degree 1 approximating $f(x, y)$ near (a, b) for a function that has continuous first-order partial derivatives.

We can expand this idea from (1) to improve our approximation of this function. If $f(x, y)$ has continuous second-order partial derivatives we can produce a Taylor Polynomial of Degree 2 approximating $f(x, y)$ near (a, b) :

$$
\begin{aligned}
f(x, y) \approx Q(x, y)= & f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+\frac{f_{x x}(a, b)}{2}(x-a)^{2} \\
& +f_{x y}(a, b)(x-a)(y-b)+\frac{f_{y y}(a, b)}{2}(y-b)^{2}
\end{aligned}
$$

Exercise

McCallum, page 811, Example 5.

Find the Taylor Polynomial of degree 2 at the point $(1,2)$ for the function $f(x, y)=\frac{1}{x y}$.

Grouphork

You are told that there is a function f whose partial derivative $f_{x}(x, y)=x+4 y$ and $f_{y}(x, y)=3 x-y$. Do you believe this? PROVE YOUR ANSWER!

The kinetic energy of a body with mass m and velocity v is $K=\frac{1}{2} m v^{2}$. Show that $\frac{\partial K}{\partial m} \frac{\partial^{2} K}{\partial v^{2}}=K$.

The gas law for fixed mass m of an ideal gas at the absolute temperature T, pressure P and volume V is $P V=m R T$ where R is the gas constant. Show that

$$
\frac{\partial P}{\partial V} \frac{\partial V}{\partial T} \frac{\partial T}{\partial P}=-1
$$

Exercise

Consider the figure with the contour diagram of an unknown function $f(x, y)$. Estimate $f_{x x}, f_{y y}$ and $f_{x y}$ at the indicated points.

