Multivariable Calculus

Math 212 Spring 2015
(c)2015 Ron Buckmire

Fowler 309 MWF 9:35am - 10:30am http://faculty.oxy.edu/ron/math/212/15/

Worksheet 8

TITLE The Tangent Plane, Differentials and Linear Approximations
CURRENT READING McCallum, Section 14.3
HW \#4 (DUE WED 02/18/15)
McCallum, Section 12.6: 24, 28, 35, 40, 52.
McCallum, Section 14.1: 10, 11, 12, 13, 17, 18, 25,26, 36, 37, 41, 48, 49.
McCallum, Section 14.2: 8, 9, 14, 24, 25, 30, 34, 36, 39, 51, 52, 65*.

SUMMARY

This worksheet discusses the multivariable analogue of the linear approximation to a singlevariable function, often visualized using tangent lines, to use tangent planes as linear approximations to surfaces $z=f(x, y)$. We will also introduce the concept of infinitesimal differentials.

RECALL: tangent line approximation for $f(x)$ at ($a, f(a)$)
For single variable functions $f(x)$, we can approximate the graph of the function $y=f(x)$ with its tangent line $y=T(x)$ at $x=a$ given by

$$
y=T(x)=f(a)+f^{\prime}(a)(x-a)
$$

Of course, you should also recognize the Tangent Line approximation as the First-Degree Taylor Polynomial Approximation of $f(x)$ at $x=a$.

RECALL: local linearity

A function $y=f(x)$ is said to be locally linear at a point $x=a$ if as one zooms in to that point it can be approximated more and more accurately by its tangent line at that point. Local linearity of a function is a proxy (i.e. conceptual stand-in) for differentiability of the function at that point.

QUESTION: Can you write down an example of a function $f(x)$ which is locally linear at the origin? How about a function that is not locally linear at the origin?

Tangent Plane to the Surface of a Multivariable Function

DEFINITION: tangent plane

Given that a surface $z=f(x, y)$ has continuous partial derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ then the equation of the Tangent plane at (a, b) is given by

$$
\begin{equation*}
z=P(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) \tag{1}
\end{equation*}
$$

EXAMPLE

McCallum, Page 772, Example 1. Find the equation of the tangent plane at the surface $z=x^{2}+y^{2}$ at the point $(3,4)$.

Multivariable Functions Can Be Locally Linear Also

The local linearization of a surface $z=f(x, y)$ at appoint (a, b) is when the surface can be approximated by the tangent plane to the surface at that point.
In other words,

$$
f(x, y) \approx P(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

This approximation is called a locally linearization of the surface even though we are using a tangent plane because a plane is linear in the two variables x and y.

EXAMPLE

McCallum, Page 773, Example 2. Find the local linearization of $F(x, y)=x^{2}+y^{2}$ at the point $(3,4)$ and use it to estimate the value of $f(2.9,4.2)$ and $f(2,2)$.

The Differential

Recall that in single variable calculus one can relate the change in output, Δy or Δf, of a function $y=f(x)$ to a change in input Δx at any point x_{0} using the expression

$$
\begin{equation*}
\Delta y \approx f^{\prime}\left(x_{0}\right) \Delta x \quad \text { or } \Delta f \approx f^{\prime}\left(x_{0}\right) \Delta x \tag{2}
\end{equation*}
$$

There is an equivalent analogue (2) to in Multivariable Calculus for the change in the output of a surface $z=f(x, y)$ at the point $\left(x_{0}, y_{0}\right)$ compared to the changes of each input variable Δx and Δy.

$$
\Delta z \text { or } \Delta f \approx f_{x}\left(x_{0}, y_{0}\right) \Delta x+f_{y}\left(x_{0}, y_{0}\right) \Delta y
$$

DEFINITION: differential of $z=f(x, y)$

The differential $d f$ (or $d z$), at a point (a, b) is the linear function of $d x$ and $d y$ given by the equation:

$$
d f=f_{x}(a, b) d x+f_{y}(a, b) d y
$$

or in general (i.e. at any point) the differential of $f(x, y)$ can be written as

$$
\begin{equation*}
d f=f_{x} d x+f_{y} d y \tag{3}
\end{equation*}
$$

The differential can be thought of as a really, really small (i.e. infinitesimal) value associated with the variable that appears after the d.
GROUPWORK
McCallum, page 777, Exercise \#23. Find the differential of $f(x, y)=\sqrt{x^{2}+y^{3}}$ at the point $(1,2)$. Use it to estimate the value of $f(1.04,1.98)$.

