Multivariable Calculus

Math 212 Spring 2015 ©2015 Ron Buckmire

Fowler 309 MWF 9:35am - 10:30am http://faculty.oxy.edu/ron/math/212/15/

Class 4

TITLE Functions, Vector Functions, Scalar Functions and f(x, y) as surfaces in \mathbb{R}^3 **CURRENT READING** McCallum, Section 12.1 to 12.2 **HW #2 (DUE WED 02/04/15)** McCallum, Section 13.3: 2, 5, 6, 10, 20, 22, 29, 35, 38, 81*. McCallum, Section 13.4: 3, 4, 13, 15, 18, 20, 32, 51, 64*. McCallum, Section 17.1: 7, 10, 13, 16, 36, 50*. **SUMMARY** In today's class we will begin to learn about functions of two variables, using our

SUMMARY In today's class we will begin to learn about functions of two variables, using our intuition from single-variable Calculus to interpret graphs of functions of two variables as surfaces.

DEFINITION: function

A **function** consists of a pre-image or **domain** (the set of input values), a range or **image** (the set of output values) and a **rule** assigning a unique output value to to each input value.

Exercise

Write down an example of a function. Explicitly state what the domain, image and rule are for your choice.

Vector Functions of a Scalar Variable

A vector function f of a scalar variable $\overline{f}(x)$ with domain $D \subset \mathbb{R}$ and image $R \subset \mathbb{R}^n$ means that the function f has possible input values which form a subset of the real numbers and the set of possible output values are a subset of \mathbb{R}^n , i.e. vectors. Often the notation $f : D \to R$ or $f : \mathbb{R} \to \mathbb{R}^n$ is used.

EXAMPLE

What kind of geometric object is the image of the function $\vec{x}(t) = (1 + 3t, -1 - t, -2 + t)$?

NOTE If the functions in the components of the vector function $\vec{x}(t)$ are not linear functions of the variable t (often called the **parameter**), then this 1-dimensional geometric object is called **a parametric curve** in \mathbb{R}^n)

Scalar Functions of a Vector Variable

A scalar function f of a vector variable $f(\vec{x})$ with domain $D \subset \mathbb{R}^n$ and image $R \subset \mathbb{R}$ means that it has possible input values that are vectors in \mathbb{R}^n and that the set of possible output values are real numbers. Often the notation $f: D \to R$ or $f: \mathbb{R}^n \to \mathbb{R}$ is used.

DEFINITION: graph

The graph of a scalar function of a vector variable $f(\vec{x})$ is defined to be the set of ordered pairs $(\vec{x}, f(\vec{x}))$ where \vec{x} is in the domain of f. In this case we say that the graph of f is explicitly represented by f. A graph is a visual representation of a function.

QUESTION: What are some other ways to represent a function in addition to a graph?

QUESTION: Can a function be treated as an object? If so, give an example of this practice!

In practice the only scalar functions of a vector variable that we can really get a good handle on visually are either of the type $f : \mathbb{R} \to \mathbb{R}$ or $f : \mathbb{R}^2 \to \mathbb{R}$. These graphs are represented by ordered pairs that look like (x, f(x)) and (x, y, f(x, y)) respectively.

DEFINITION: surface

We know all about the first case $(f : \mathbb{R} \to \mathbb{R})$ from single-variable Calculus so we will be concentrating on the second case $(f : \mathbb{R}^2 \to \mathbb{R})$, which are often called **surfaces** and denoted z = f(x, y) so that the ordered pair looks like (x, y, z). Below are two examples of surfaces in \mathbb{R}^3 .

