Quiz 8	Multivariable Calculu
Name:	Assigned: Friday March 27
m: D	Due: Monday March 30
Time Begun: Time Ended:	Prof. Ron Buckmire
$f{Topic}$: Constrained Multivariable Optimization	n
The idea behind this quiz is to provide you with an one of the extrema of a multivariable function con	
Reality Check:	
EXPECTED SCORE :/10	ACTUAL SCORE :/10
Instructions: 1. Once you open the quiz, you have 30 minutes	s to complete please record your start time and
end time at the top of this sheet.	s to complete, please record your start time and
2. You may use the book or any of your class no	tes. You must work alone.
3. If you use your own paper, please staple it to the a stapler, buy one. QUIZZES WITH UNSTAR	- •
4. After completing the quiz, sign the pledge below to these rules.	ow stating on your honor that you have adhered
5. Your solutions must have enough details such and determine HOW you came up with your s	- · · · · · · · · · · · · · · · · · · ·
6. Relax and enjoy	
7. This quiz is due at the beginning of class NO LATE OR UNSTAPLED QUIZZES WILL	
Pledge: I,, pledge my l	

- 1. Our goal is to find the maximum and minimum values of the surface $z = f(x,y) = x^2 + y^2 x y + 1$ constrained to the interior of the unit disk $D: x^2 + y^2 \le 1$.
- (a) (3 points) Show that the only critical point of f(x,y) occurs at (1/2,1/2,1/2).

(b) (2 points) Show that since the boundary can be parametrized by the curve $\vec{x}(t) = (\cos(t), \sin(t))$ with $0 \le t \le 2\pi$ the surface intersected with the boundary becomes a curve $g(t) = f(x(t), y(t)) = 2 - \sin t - \cos t$.

(c) (3 points) Explain why g(t) must attain its extreme values at either $t=0, t=\pi/4, t=5\pi/4$ or $t=2\pi$.

(d) (2 points) Use information from (a), (b) and (c) to write down the coordinates of the maximum and minimum values of the surface z = f(x, y) where the input values must lie in the set D: $x^2 + y^2 \le 1$.