Quiz 6	Multivariable Calculus
Name:	Assigned: Wednesday March 4
Tr: D	Due: Monday March 16
Time Begun: Time Ended:	Prof. Ron Buckmire
Topic: The Multivariable Chain Rule	
The idea behind this quiz is to provide you with an omultivariable chain rule.	apportunity to demonstrate your understanding of the
Reality Check:	
EXPECTED SCORE :/10	ACTUAL SCORE :/10
Instructions:	
1. Once you open the quiz, you have 30 minu end time at the top of this sheet.	tes to complete, please record your start time and
2. You may use the book or any of your class	notes. You must work alone.
	o the quiz before coming to class. If you don't have TAPLED SHEETS WILL NOT BE GRADED.
4. After completing the quiz, sign the pledge be to these rules.	below stating on your honor that you have adhered
5. Your solutions must have enough details su and determine HOW you came up with you	ch that an impartial observer can read your work ir solution.
6. Relax and enjoy	
7. This quiz is due at the beginning of c NO LATE OR UNSTAPLED QUIZZES W	· ·
Pledge: I,, pledge me that I have followed all the rules above to the let	ny honor as a human being and Occidental student, ter and in spirit.

(Adapted from Math 212 Spring 2006 Midterm #2.)

1. Consider the function u(x, y, z) = f(x - y, y - z, z - x). Our goal is to show that a function u with this form satisfies the following famous partial differential equation

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0.$$

(a) (3 points.) Consider a function u = f(r, s, t) where r = r(x, y, z), s = s(x, y, z) and t = t(x, y, z) are given. In other words, although u is a function of r, s and t, since each of these functions is a function of x, y and z one can consider u as a function of x, y and z. Draw a "tree diagram" reflecting the relationships between the variables.

(b) (3 points) Use the Multivariable Chain Rule to write down expressions for $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, and $\frac{\partial u}{\partial z}$ where u is assumed to be related to x, y and z as described in part (a).

(c) (4 points) Let r = x - y, s = y - z and t = z - x. Use this information and your answer to (b) to show that u(x, y, z) = f(x - y, y - z, z - x) satisfies the equation $u_x + u_y + u_z = 0$.