Multivariable Calculus

Name:	Assigned: Friday January 30
Time Demon	Due: Monday February 2
Time Ended:	Prof. Ron Buckmire

Topic : Planes and the Cross Product

The idea behind this bonus quiz is to provide you with an opportunity to illustrate your understanding of planes 3-dimensional space.

Reality Check:

EXPECTED SCORE : ____/10

ACTUAL SCORE : _____/10

Instructions:

- 1. Once you open the quiz, you have **30 minutes** to complete, please record your start time and end time at the top of this sheet.
- 2. You may use the book or any of your class notes. You must work alone.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one. QUIZZES WITH UNSTAPLED SHEETS WILL NOT BE GRADED.
- 4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- 5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
- 6. Relax and enjoy...
- 7. This quiz is due at the beginning of class on Monday February 2. NO LATE OR UNSTAPLED QUIZZES WILL BE ACCEPTED FOR GRADING.

Pledge: I, ______, pledge my honor as a human being and Occidental student, that I have followed all the rules above to the letter and in spirit.

Quiz 2

- 1. Consider the position vectors $\vec{A} = (-1, 0, 2), \vec{B} = (2, 2, 0)$ and $\vec{C} = (4, -2, 2)$ in \mathbb{R}^3 .
- **a.** (5 points) Find the general equation of the plane which goes through these three points in \mathbb{R}^3 .

b. (2 points) Show that a normal vector for your plane in (a) is $\vec{n} = 2\hat{i} + 5\hat{j} + 8\hat{k}$.

c. (3 points) Show that the normal vector for the plane given in part (b) is not orthogonal to any of the position vectors $\vec{A} = (-1, 0, 2)$, $\vec{B} = (2, 2, 0)$ or $\vec{C} = (4, -2, 2)$. Is this a surprise? EXPLAIN YOUR ANSWER!