Quiz 1 Multivariable Calculus

Name:	Assigned: Friday January 23
Time Degun	Due: Monday January 26
Time Ended:	Prof. Ron Buckmire

Topic : Vectors and Lines in \mathbb{R}^4

The idea behind this quiz is to provide you with an opportunity to illustrate your ability to manipulate vectors algebraically and contemplate geometry in \mathbb{R}^4 .

Reality Check:

EXPECTED SCORE : ____/10

ACTUAL SCORE : _____/10

Instructions:

- 1. Once you open the quiz, you have **30 minutes** to complete, please record your start time and end time at the top of this sheet.
- 2. You may use the book or any of your class notes. You must work alone.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one. QUIZZES WITH UNSTAPLED SHEETS WILL NOT BE GRADED.
- 4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- 5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
- 6. Relax and enjoy...
- 7. This quiz is due at the beginning of class on Monday January 26. NO LATE OR UNSTAPLED QUIZZES WILL BE ACCEPTED FOR GRADING.

Pledge: I, _____, pledge my honor as a human being and Occidental student, that I have followed all the rules above to the letter and in spirit.

Consider the position vectors $\vec{A} = (-1, 0, 2, 2)$ and $\vec{B} = (2, 2, 0, 1)$ for all of the problems below. **1.** (2 points) Compute $\vec{A} - 3\vec{B}$.

2. (2 points) Find the coordinates of the midpoint between $\vec{A} = (-1, 0, 2, 2)$ and $\vec{B} = (2, 2, 0, 1)$.

3. (2 points) Compute the dot product of \vec{A} and \vec{B} , i.e. $\vec{A} \cdot \vec{B}$. Explain the geometric significance of your answer.

4. (2 points) Write down the vector equation (i.e. $\vec{x}(t) = \vec{p} + \vec{dt}$) of the line joining the points represented by the position vectors \vec{A} and \vec{B} .

5. (2 points) Write down the position vector of another point (OTHER than \vec{A} or \vec{B} !) that you are certain is on the line defined in Question 4. Is the point represented by position vector $\vec{C} = (5, 4, -2, 0)$ also on the line joining \vec{A} and \vec{B} ? How do you know? Explain your answer!