Multivariable Calculus

Math 212 §2 Fall 2014 **© 2014 Ron Buckmire**

Fowler 309 MWF 11:45am - 12:40pm http://faculty.oxy.edu/ron/math/212/14/

Worksheet 29

TITLE The Last Day of Class!

CURRENT READING McCallum, Chapter 12, Chapter 13, Chapter 14, Chapter 15, Chapter 16 (Not 16.6), Chapter 17 (Not 17.4), Chapter 18, Section 19.3 and Section 20.1

SUMMARY

This worksheet reviews the concepts that you need to be responsible for on the Final Exam.

Here are the titles of the Worksheets in this class.

* means Final Exam will not cover this material

Worksheet 1 *Introduction to Vectors (Notation and Terminology)*

Worksheet 2 The Dot Product and Vector Equations of Lines and Planes

Worksheet 3 *Vector Projection and the Vector Cross Product*

Worksheet 4 Functions, Vector Functions, and f(x, y) as surfaces

Worksheet 5 Cross-Sections and Level Sets

Worksheet 6 Limits of Multivariable Functions

Worksheet 7 The Partial Derivative

Worksheet 8 The Tangent Plane, Differentials, and Linear Approximations

Worksheet 9 The Directional Derivative and the Gradient Vector

Worksheet 10 *The Gradient Vector in* \mathbb{R}^3

Worksheet 11 The Chain Rule

Worksheet 12 Second-Order Partial Derivatives

Worksheet 13 Review for Exam 1

Worksheet 14 *Differentiability of a Multivariable Function*

Worksheet 15 *Local Extrema of a Multivariable Function*

Worksheet 16 (Unconstrained) Optimization of a Multivariable Function

Worksheet 17 Multivariable Constrained Optimization (Using Lagrange Multipliers)

Worksheet 18 (Integration of a Multivariable Function

Worksheet 19 Iterated Integration

Worksheet 20 Triple Integrals

Worksheet 21 Evaluating Multiple Integrals Using Other Coordinate Systems

Worksheet 22 The Calculus of Curves In Space

Worksheet 23 Review for Exam 2

Worksheet 24 *Vector Fields and Line Integrals*

Worksheet 25 *Gradient Fields and Path-independent Vector Fields*

Worksheet 26 Green's Theorem and the Scalar Curl

Worksheet 27 The Divergence and Curl and Introduction To Vector Calculus

Worksheet 28 The Three Fundamental Theorems of Vector Calculus*

Here are the list of in-class activities

Surface Activity 1 The Surface (Functions of Two Variables)

Surface Activity 2 The Park (Level Sets)

Supplemental Activity Matching Contours and Surfaces

Surface Activity 3 The Hillside (The Gradient Vector)

Surface Activity 4 *The Water Table (Constrained Multivariable Optimization)*

Here are the titles of the Take-Home Quizzes in the class

Quiz 1 *Vectors and Lines in* \mathbb{R}^4

BONUS 1 *Planes and the Cross Product*

Quiz 2 *Multivariable Functions*

Quiz 3 Application of Partial Derivatives

BONUS 2 *Understanding Partial Derivatives*

Quiz 4 Gradient Vector and Directional Derivatives

Quiz 5 Extreme Values of Surfaces

Quiz 6 Constrained Multivariable Optimization

Quiz 7 *Iterated Integration*

BONUS 3 Multivariable Optimization Using Lagrange Multipliers

Quiz 8 *Triple Integrals*

Quiz 9 *Line Integrals*

Quiz 10 Green's Theorem

Here are the sections of the book we have covered in the class, Calculus: Multivariable (6th Edition)

Section 12.1 Functions of Two Variables

Section 12.2 *Graphs and Surfaces*

Section 12.3 *Contour Diagrams*

Section 12.4 *Linear Functions*

Section 12.5 Functions of Three Variables

Section 12.6 *Limits and Continuity*

Section 13.1 Displacement Vectors

Section 13.2 *Vectors in General*

Section 13.3 The Dot Product

Section 13.4 The Cross Product

Section 14.1 *The Partial Derivative*

Section 14.2 *Computing Partial Derivatives Algebraically*

Section 14.3 *Local Linearity and the Differential*

Section 14.4 *Gradients and Directional Derivatives in the Plane*

Section 14.5 *Gradients and Directional Derivatives in Space*

Section 14.6 *The Chain Rule*

Section 14.7 Second-Order Partial Derivatives

Section 14.8 Differentiability

Section 15.1 Critical Points

Section 15.2 *Optimization*

Section 15.3 *Constrained Optimization: Lagrange multipliers*

Section 16.1 Definite Integral Of A Function of Two Variables

Section 16.2 *Iterated Integrals*

Section 16.3 *Triple Integrals* **Section 16.4** *Double Integrals in Polar Coordinates*

Section 16.5 *Integrals in Cylindrical or Spherical Coordinates*

Section 17.1 Parametrized Curves

Section 17.2 Motion, Velocity and Acceleration

Section 17.3 *Vector Fields*

Section 18.1 *The Idea of a Line Integral*

Section 18.2 Computing Line Integral Over Parametrized Curves

Section 18.3 *Gradient Fields and Path-Independent Fields*

Section 18.4 *Green's Theorem and Path-dependent Fields*

Section 19.3 *The Divergence of a Vector Fieldl*

Section 20.1 The Curl of a Vector Field

GROUPWORK

What topic(s) are the most unclear right now?

Which topic(s) do you have the most confidence in answering questions on?