Multivariable Calculus

Math 212 §2 Fall 2014
Fowler 309 MWF 11:45am - 12:40pm (c)2014 Ron Buckmire

Worksheet 27

TITLE Divergence and Curl of a Vector Field
CURRENT READING McCallum, Section 19.3 and 20.1)
HW \#12 (DUE Wednesday 12/1/14 5PM)
McCallum, Section 18.4: 1, 2, 3, 4, 15, 16, 20, 23*.
McCallum, Chapter 18 Review: 1, 2, 8, 15, 16, 17, 26, 45.
McCallum, Section 19.3: 1, 2, 3, 4, 6, 11, 27, 28.
McCallum, Section 20.1: 3, 4, 7, 13, 14, 28.

SUMMARY

This worksheet discusses the geometric and algebraic definitions of the curl and divergence of a vector field.

RECALL

Given a vector field \vec{F} in \mathbb{R}^{2} such that $\vec{F}=F_{1}(x, y) \hat{i}+F_{2}(x, y) \hat{j}$ the expression $\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}$ is called the scalar curl.

DEFINITION: scalar curl in \mathbb{R}^{3}

Given a 3-D vector field with only two components $\vec{F}(x, y)=F_{1}(x, y) \hat{i}+F_{2}(x, y) \hat{j}+0 \hat{k}$ we can define the (badly-misnamed) scalar curl of \vec{F} to be

$$
\operatorname{curl} \vec{F}=\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \hat{k}
$$

NOTE: The curl of a 2-D vector field will either be pointed into the page (using the symbol \otimes) or out of the page (using the symbol \odot) or be the zero vector $\overrightarrow{0}$.

The Curl Of A Vector Field

DEFINITION: vector curl in \mathbb{R}^{3}

The curl of a vector field $\vec{F}(\vec{x})$ in \mathbb{R}^{3} is a vector property denoted by curl $\vec{F}(\vec{x})$ and defined as $\vec{\nabla} \times \vec{F}$ where $\vec{F}=F_{1} \hat{i}+F_{2} \hat{j}+F_{3} \hat{k}$ in \mathbb{R}^{3} and $\vec{\nabla}$ is the vector operator $\frac{\partial}{\partial x} \hat{i}+\frac{\partial}{\partial y} \hat{j}+\frac{\partial}{\partial z} \hat{k}$.

$$
\operatorname{curl} \vec{F}=\vec{\nabla} \times \vec{F}=\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) \hat{i}+\left(\frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}\right) \hat{j}+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \hat{k}
$$

Algebraically, you could think of the curl as the following determinant:

$$
\operatorname{curl} \vec{F}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right|
$$

NOTE: The curl is the cross product of the gradient operator with a vector field \vec{F}, so it is a vector quantity.

The Curl Of Some Of Our Favorite Vector Fields

EXAMPLE
Let's find the curl of some of our favorite planar vector fields.

$\vec{A}(x, y)=(x+y) \hat{i}+(x-y) \hat{j}$

$$
\vec{E}(x, y)=y \hat{i}-x \hat{j}
$$

$$
\vec{F}(x, y)=-y \hat{i}+x \hat{j}
$$

Geometric Understanding Of Curl

DEFINITION: circulation density

The circulation density of a smooth vector field \vec{F} around the direction of a unit vector \hat{n} is defined, provided the limit exists, to be

$$
\operatorname{circ}_{\hat{n}} \vec{F}=\lim _{\text {Area } \rightarrow 0} \frac{\oint_{C} \vec{F} \cdot d \vec{x}}{\text { Area inside } C}=\lim _{\text {Area } \rightarrow 0} \frac{\text { Circulation of } \vec{F} \text { around } C}{\text { Area inside } C}=(\vec{\nabla} \times \vec{F}) \cdot \hat{n}
$$

where C is a closed curve in a plane perpendicular to \hat{n} positively oriented using the right-hand rule. (When the Right-Hand Thumb points in direction of \hat{n} Other Fingers are curled in direction of traversal around C.)

CONCEPTUAL UNDERSTANDING OF CURL

The direction the vector curl of a vector field \vec{F} points in is the direction for which the circulation density of \vec{F} is the GREATEST.

The magnitude of the vector curl of a vector field \vec{F} is the circulation density of \vec{F} around the direction $\vec{\nabla} \times \vec{F}$ points in.

If the circulation density is zero around every direction then we say the curl is $\overrightarrow{0}$ and describe such a vector field as irrotational.

Recall that gradient fields have the property that every line integral around a closed path is zero so this means that all gradient fields are irrotational, which can be expressed mathematically as

$$
\vec{\nabla} \times \vec{\nabla} \phi=\overrightarrow{0} \text { for any potential function } \phi
$$

Divergence of a Vector Field

DEFINITION: divergence

The divergence of a vector field $\vec{F}(\vec{x})$ is a scalar property denoted by $\operatorname{div} \vec{F}(\vec{x})$ defined as the trace of the Jacobian matrix, i.e. the sum of the diagonal elements of this matrix. In particular, if one considers $\vec{F}=F_{1} \hat{i}+F_{2} \hat{j}+F_{3} \hat{k}$ in \mathbb{R}^{3} where $\vec{\nabla}=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ then the divergence of \vec{F} can be defined as

$$
\operatorname{div} \vec{F}=\vec{\nabla} \cdot \vec{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}
$$

NOTE: The divergence is the dot product of the gradient operator with a vector field \vec{F}, so it is a scalar quantity.
GROUPWORK
Find the Divergence of the six vector fields depicted earlier on this worksheet.

Properties Of Gradient, Divergence and Curl As Vector Calculus Operations

 The divergence $\vec{\nabla} \cdot \square$ and curl $\vec{\nabla} \times \square$ can be thought of as differential operations that are applied to vector fields, and produce scalars and vectors, respectively. The gradient operator $\vec{\nabla} \square$ is applied to a scalar function and outputs a vector field. Given scalar functions ϕ and ψ and vector fields \vec{F} and \vec{G} the following properties apply to the gradient, curl and divergence operators.
Distributivity

$$
\begin{aligned}
\vec{\nabla} \cdot(\vec{F}+\vec{G}) & =\vec{\nabla} \cdot \vec{F}+\vec{\nabla} \cdot \vec{G} \\
\vec{\nabla} \times(\vec{F}+\vec{G}) & =\vec{\nabla} \times \vec{F}+\vec{\nabla} \times \vec{G} \\
\vec{\nabla}(\phi+\psi) & =\vec{\nabla} \phi+\vec{\nabla} \psi
\end{aligned}
$$

Product Rules

$$
\begin{aligned}
\vec{\nabla} \cdot(\phi \vec{F}) & =\vec{F} \cdot(\vec{\nabla} \phi)+\phi \vec{\nabla} \cdot \vec{F} \\
\vec{\nabla} \times(\phi \vec{F}) & =\phi(\vec{\nabla} \times \vec{F})+(\vec{\nabla} \phi) \times \vec{F} \\
\vec{\nabla}(\phi \psi) & =\psi(\vec{\nabla} \phi)+\phi(\vec{\nabla} \psi)
\end{aligned}
$$

Repeated Applications ("Second Derivatives")

$$
\begin{aligned}
\vec{\nabla} \cdot(\vec{\nabla} \times \vec{F}) & =\operatorname{div} \operatorname{curl} \vec{F}=0 \\
\vec{\nabla} \times(\vec{\nabla} \phi) & =\text { curl } \operatorname{grad} \phi=\overrightarrow{0} \\
\vec{\nabla} \cdot(\vec{\nabla} \phi) & =\nabla^{2} \phi=\Delta \phi=\operatorname{div} \operatorname{grad} \phi \\
\vec{\nabla} \times(\vec{\nabla} \times \vec{F}) & =\vec{\nabla}(\vec{\nabla} \cdot \vec{F})-\nabla^{2} \vec{F}=\operatorname{curl} \operatorname{curl} \vec{F}
\end{aligned}
$$

Exercise

How many possible binary arrangements of div, grad and curl are there?

QUESTION: How many of these are well-defined operations? How many of these are identically zero?

EXAMPLE

For $\vec{F}=F_{1} \hat{i}+F_{2} \hat{j}+F_{3} \hat{k}$ and $\vec{\nabla}=\frac{\partial}{\partial x} \hat{i}+\frac{\partial}{\partial y} \hat{j}+\frac{\partial}{\partial z} \hat{k}$ let's confirm the vector calculus identities $\operatorname{div} \operatorname{curl} \vec{F}=\vec{\nabla} \cdot(\vec{\nabla} \times \vec{F})=0$ and $\vec{\nabla} \times(\vec{\nabla} \phi)=\mathbf{c u r l} \operatorname{grad} \phi=\overrightarrow{0}$.

