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Worksheet 27

TITLE Divergence and Curl of a Vector Field
CURRENT READING McCallum, Section 19.3 and 20.1)
HW #12 (DUE Wednesday 12/1/14 5PM)
McCallum, Section 18.4: 1, 2, 3, 4, 15, 16, 20, 23*.
McCallum, Chapter 18 Review: 1, 2, 8, 15, 16, 17, 26, 45.
McCallum, Section 19.3: 1, 2, 3, 4, 6, 11, 27, 28.
McCallum, Section 20.1: 3, 4, 7, 13, 14, 28.

SUMMARY
This worksheet discusses the geometric and algebraic definitions of the curl and divergence of a
vector field.

RECALL

Given a vector field ~F in R2 such that ~F = F1(x, y)̂i + F2(x, y)ĵ the expression
∂F2

∂x
− ∂F1

∂y
is

called the scalar curl.

DEFINITION: scalar curl in R3

Given a 3-D vector field with only two components ~F (x, y) = F1(x, y)̂i+ F2(x, y)ĵ + 0k̂ we can
define the (badly-misnamed) scalar curl of ~F to be

curl ~F =

(
∂F2

∂x
− ∂F1

∂y

)
k̂

NOTE: The curl of a 2-D vector field will either be pointed into the page (using the symbol ⊗)
or out of the page (using the symbol �) or be the zero vector ~0.

The Curl Of A Vector Field
DEFINITION: vector curl in R3

The curl of a vector field ~F (~x) in R3 is a vector property denoted by curl ~F (~x) and defined as
~∇× ~F where ~F = F1î+ F2ĵ + F3k̂ in R3 and ~∇ is the vector operator

∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂.

curl ~F = ~∇× ~F =

(
∂F3

∂y
− ∂F2

∂z

)
î+

(
∂F1

∂z
− ∂F3

∂x

)
ĵ +

(
∂F2

∂x
− ∂F1

∂y

)
k̂

Algebraically, you could think of the curl as the following determinant:

curl ~F =

∣∣∣∣∣∣∣∣
î ĵ k̂
∂

∂x

∂

∂y

∂

∂z
F1 F2 F3

∣∣∣∣∣∣∣∣
NOTE: The curl is the cross product of the gradient operator with a vector field ~F , so it is a

vector quantity.
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The Curl Of Some Of Our Favorite Vector Fields
EXAMPLE

Let’s find the curl of some of our favorite planar vector fields.

~A(x, y) = (x+ y)̂i+ (x− y)ĵ ~B(x, y) = xî+ yĵ

~C(x, y) = xĵ ~D(x, y) = −yî

~E(x, y) = yî− xĵ ~F (x, y) = −yî+ xĵ
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Geometric Understanding Of Curl
DEFINITION: circulation density

The circulation density of a smooth vector field ~F around the direction of a unit vector n̂ is
defined, provided the limit exists, to be

circn̂ ~F = lim
Area→0

∮
C

~F · d~x

Area inside C
= lim

Area→0

Circulation of ~F around C
Area inside C

= (~∇× ~F ) · n̂

where C is a closed curve in a plane perpendicular to n̂ positively oriented using the right-hand
rule. (When the Right-Hand Thumb points in direction of n̂ Other Fingers are curled in direction
of traversal around C.)
CONCEPTUAL UNDERSTANDING OF CURL

The direction the vector curl of a vector field ~F points in is the direction for which the circulation
density of ~F is the GREATEST.

The magnitude of the vector curl of a vector field ~F is the circulation density of ~F around the
direction ~∇× ~F points in.

If the circulation density is zero around every direction then we say the curl is ~0 and describe such
a vector field as irrotational.

Recall that gradient fields have the property that every line integral around a closed path is zero so
this means that all gradient fields are irrotational, which can be expressed mathematically as

~∇× ~∇φ = ~0 for any potential function φ

Divergence of a Vector Field
DEFINITION: divergence

The divergence of a vector field ~F (~x) is a scalar property denoted by div~F (~x) defined as the trace
of the Jacobian matrix, i.e. the sum of the diagonal elements of this matrix. In particular, if one

considers ~F = F1î + F2ĵ + F3k̂ in R3 where ~∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
then the divergence of ~F can

be defined as
div~F = ~∇ · ~F =

∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

NOTE: The divergence is the dot product of the gradient operator with a vector field ~F , so it is
a scalar quantity.
GROUPWORK

Find the Divergence of the six vector fields depicted earlier on this worksheet.
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Properties Of Gradient, Divergence and Curl As Vector Calculus Operations
The divergence ~∇ ·� and curl ~∇×� can be thought of as differential operations that are applied
to vector fields, and produce scalars and vectors, respectively. The gradient operator ~∇� is applied
to a scalar function and outputs a vector field. Given scalar functions φ and ψ and vector fields ~F
and ~G the following properties apply to the gradient, curl and divergence operators.
Distributivity

~∇ · (~F + ~G) = ~∇ · ~F + ~∇ · ~G
~∇× (~F + ~G) = ~∇× ~F + ~∇× ~G

~∇(φ+ ψ) = ~∇φ+ ~∇ψ

Product Rules

~∇ · (φ~F ) = ~F · (~∇φ) + φ~∇ · ~F
~∇× (φ~F ) = φ(~∇× ~F ) + (~∇φ)× ~F

~∇(φψ) = ψ(~∇φ) + φ(~∇ψ)

Repeated Applications (“Second Derivatives”)

~∇ · (~∇× ~F ) = div curl ~F = 0

~∇× (~∇φ) = curl grad φ = ~0

~∇ · (~∇φ) = ∇2φ = ∆φ = div grad φ
~∇× (~∇× ~F ) = ~∇(~∇ · ~F )− ∇2 ~F = curl curl ~F

Exercise
How many possible binary arrangements of div, grad and curl are there?

QUESTION: How many of these are well-defined operations? How many of these are identically
zero?
EXAMPLE

For ~F = F1î+ F2ĵ + F3k̂ and ~∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂ let’s confirm the vector calculus identities

div curl ~F = ~∇ · (~∇× ~F ) = 0 and ~∇× (~∇φ) = curl grad φ = ~0.
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