Multivariable Calculus

Math 212 §2 Fall 2014 ©2014 Ron Buckmire Fowler 309 MWF 11:45am - 12:40pm http://faculty.oxy.edu/ron/math/212/14/

Worksheet 21

TITLE Evaluating Multiple Integrals Using Other Coordinate Systems **CURRENT READING** McCallum, Section 16.4-16.5, 21.2 **HW #8 (DUE Wednesday 11/4/14 5PM)** McCallum, *Section 16.3*: 2, 5, 6, 28, 39, 40, 41, 42, 54*,55*. McCallum, *Chapter 16.4*: 3, 7, 8,17, 20, 22. McCallum, *Chapter 16.5*: 12, 13, 14, 15, 21, 22, 23, 63*, 73. McCallum, *Chapter 16 Review*: 1, 4, 10, 11, 12, 14, 20, 23, 55*, 56*.

SUMMARY

This worksheet discusses how to compute iterated integrals in other coordinate systems, namely polar coordinates, spherical coordinates and cylindrical coordinates.

RECALL Points in the xy-plane can also be represented by a different coordinate system, called **polar coordinates** where $r = \sqrt{x^2 + y^2}$ and $\theta = \arctan(y/x)$. In other words,

 $x = r\cos\theta, \qquad y = r\sin\theta$

The Double Integral In Polar Coordinates

Consider the following integral

$$\int_{R} f(x,y) \, dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r,\theta) \, r \, dr \, d\theta \tag{1}$$

NOTE

Note that the dA which in regular Cartesian coordinates is either dx dy or dy dx becomes $r dr d\theta$ NOT simply $dr d\theta$!

Some problems are easier to do in polar coordinates than cartesian coordinates!

Evaluate $\int_D \cos(x^2 + y^2) dA$ where D is the disk (i.e. interior and boundary) of radius $\sqrt{\pi/2}$ centered at (0, 0).

THEOREM

Jacobi's Theorem for Transforming Integrals Between Coordinate Systems

The integral of a continuous function $f(\vec{x})$ over a region \mathcal{W} in \mathbb{R}^n can be transformed into an equivalent integral of $f(\vec{T}(\vec{x}))$ in a region \mathcal{W}^* where \vec{T} is a continuously differentiable transformation that maps \mathcal{W} to \mathcal{W}^* , i.e. $\mathcal{W}^* = T(\mathcal{W})$.

In other words, suppose in \mathbb{R}^3 that $\vec{T}(\vec{x}) = \begin{bmatrix} u(x, y, z) \\ v(x, y, z) \\ w(x, y, z] \end{bmatrix}$ so that

$$\iint \iint_{W} f(x, y, z) \, dx \, dy \, dz = \iint \iint_{W^*} f(x(u, v, w), y(u, v, w), z(u, v, w)) \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| \, du \, dv \, dw \text{ in } \mathbb{R}^3$$

and in $\mathbb{R}^2 \vec{T}(\vec{x}) = \begin{bmatrix} u(x,y) \\ v(x,y) \end{bmatrix}$ so that

$$\iint_{W} f(x,y) \, dx \, dy = \iint_{W^*} f(x(u,v), y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, du \, dv \text{ in } \mathbb{R}^2$$

The expressions $\left|\frac{\partial(x,y)}{\partial(u,v)}\right|$ and $\left|\frac{\partial(x,y,z)}{\partial(u,v,w)}\right|$ are called the **Jacobian** of the transformation. In actuality they are the determinant of the Jacobian matrix associated with the transformation.

DEFINITION: The Jacobian Matrix

The Jacobian matrix of a function $\vec{f}(\vec{x})$ is a matrix where the term in the i^{th} row and j^{th} column is the expression $\frac{\partial f_i}{\partial x_j}$ where f_i is the i^{th} component of the vector function $\vec{f}(\vec{x})$ and x_j is the j^{th} component of the vector variable \vec{x} .

The Jacobian matrix for \vec{T} in \mathbb{R}^3 and \mathbb{R}^2 respectively is given below

$$\left|\frac{\partial(x,y,z)}{\partial(u,v,w)}\right| = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{bmatrix} \qquad \qquad \left|\frac{\partial(x,y)}{\partial(u,v)}\right| = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix}$$

CONCEPTUAL UNDERSTANDING

Generally, we use Jacobi's theorem to convert from Cartesian coordinates to polar, spherical, and cylindrical co-ordinates.

Change of Variables: Polar Coordinates

$$\iint_D f(x,y) \, dx \, dy = \iint_{D^*} f(r\cos\theta, r\sin\theta) \, r \, dr \, d\theta$$

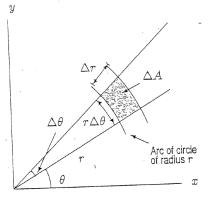
Change of Variables: Cylindrical Coordinates

$$\iiint_W f(x, y, z) \, dx \, dy \, dz = \iiint_{W^*} f(r \cos \theta, r \sin \theta, z) \, r \, dr \, d\theta \, dz$$

Change of Variables: Spherical Coordinates

$$\iiint_{W} f(x, y, z) \, dx \, dy \, dz = \iiint_{W^*} f(r \sin \phi \cos \theta, r \sin \phi \sin \theta, r \cos \phi) \, r^2 \sin \phi \, dr \, d\theta \, d\phi$$

Visualizing The Area Differential In Polar Coordinates



The area of the segment of the circular arc of radius r of angular width $\Delta \theta$ and length Δr is $\Delta A \approx (r\Delta \theta)(\Delta r)$

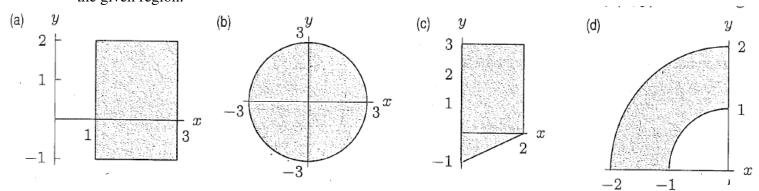
EXAMPLE

We can use the Jacobian of the transformation from Cartesian coordinates (x, y) to polar coordinates (r, θ) to explain why $dx dy = r dr d\theta$.

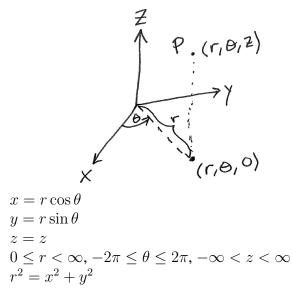
Let
$$\vec{T}(\vec{x}) = \begin{bmatrix} x(r,\theta) \\ y(r,\theta) \end{bmatrix}$$
 where $x(r,\theta) = r\cos\theta$ and $y(r,\theta) = r\sin\theta$ and compute $\left|\frac{\partial(x,y)}{\partial(r,\theta)}\right|$

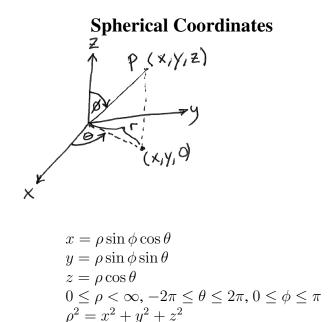
Exercise

McCallum, page 893, Example 3. For each of the regions below decide whether to integrate using polar or Cartesian coordinates. Write down an iterated integral of an arbitrary function f(x, y) over the given region.

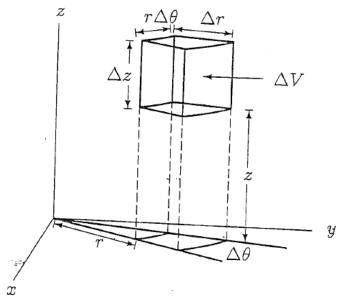


Cylindrical Coordinates

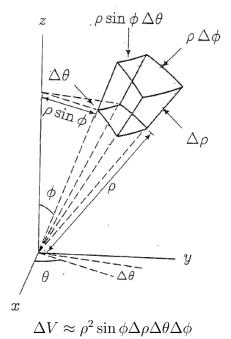




Visualizing The Volume Differential In Cylindrical Coordinates and Spherical Coordinates



 $\Delta v \approx r \Delta r \Delta z \Delta \theta$



EXAMPLE

McCallum, page 903, Exercise 19. Write a triple integral in cylindrical coordinates giving the volume of a sphere of radius K centered at the origin. Use the order $dz dr d\theta$.

Evaluate the triple integral to show the volume of the sphere of radius K is $\frac{4}{3}\pi K^3$.

Exercise

McCallum, page 903, Exercise 20. Write a triple integral in spherical coordinates giving the volume of a sphere of radius K centered at the origin. Use the order $d\theta \ d\rho \ d\phi$.

Evaluate the triple integral to show the volume of the sphere of radius K is $\frac{4}{3}\pi K^3$.

GROUPWORK

McCallum, page 903, Exercise 24-25.

Use (a) Cartesian (b) Cylindrical (c) Spherical coordinates to write down the limits of integration c

for $\int_{W} dV$ for the following figures.

24. One-eighth of the sphere with unit radius centered at the origin (occupying the positive x, y and z quadrants)

25. The shape formed by a cone with 90° vertex at the origin topped by the sphere of radius 1 centered at the origin. (Sort of looks like an ice-cream cone.)