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Worksheet 21

TITLE Evaluating Multiple Integrals Using Other Coordinate Systems
CURRENT READING McCallum, Section 16.4-16.5, 21.2
HW #8 (DUE Wednesday 11/4/14 5PM)
McCallum, Section 16.3: 2, 5, 6, 28, 39, 40, 41, 42, 54*,55*.
McCallum, Chapter 16.4: 3, 7, 8,17, 20, 22.
McCallum, Chapter 16.5: 12, 13, 14, 15, 21, 22, 23, 63*, 73.
McCallum, Chapter 16 Review: 1, 4, 10, 11, 12, 14, 20, 23, 55*, 56*.

SUMMARY
This worksheet discusses how to compute iterated integrals in other coordinate systems, namely
polar coordinates, spherical coordinates and cylindrical coordinates.

RECALL Points in the xy-plane can also be represented by a different coordinate system, called
polar coordinates where r =

√
x2 + y2 and θ = arctan(y/x). In other words,

x = r cos θ, y = r sin θ

The Double Integral In Polar Coordinates
Consider the following integral∫

R

f(x, y) dA =

∫ β

α

∫ b

a

f(r, θ) r dr dθ (1)

NOTE
Note that the dA which in regular Cartesian coordinates is either dx dy or dy dx becomes
r dr dθ NOT simply dr dθ!

Some problems are easier to do in polar coordinates than cartesian coordinates!
EXAMPLE

Evaluate
∫
D

cos(x2 + y2) dA where D is the disk (i.e. interior and boundary) of radius
√
π/2

centered at (0, 0).
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THEOREM
Jacobi’s Theorem for Transforming Integrals Between Coordinate Systems
The integral of a continuous function f(~x) over a regionW in Rn can be transformed into an equiv-
alent integral of f(~T (~x)) in a regionW∗ where ~T is a continuously differentiable transformation
that mapsW toW∗, i.e. W∗ = T (W).

In other words, suppose in R3 that ~T (~x) =

 u(x, y, z)
v(x, y, z)
w(x, y, z

 so that

∫ ∫ ∫
W

f(x, y, z) dx dy dz =

∫ ∫ ∫
W ∗
f(x(u, v, w), y(u, v, w), z(u, v, w))

∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ du dv dw in R3

and in R2 ~T (~x) =

[
u(x, y)
v(x, y)

]
so that∫ ∫

W

f(x, y) dx dy =

∫ ∫
W ∗
f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv in R2

The expressions
∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ and
∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ are called the Jacobian of the transformation. In actu-

ality they are the determinant of the Jacobian matrix associated with the transformation.

DEFINITION: The Jacobian Matrix
The Jacobian matrix of a function ~f(~x) is a matrix where the term in the ith row and jth column

is the expression
∂fi
∂xj

where fi is the ith component of the vector function~f(~x) and xj is the jth

component of the vector variable ~x.
The Jacobian matrix for ~T in R3 and R2 respectively is given below

∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ =


∂u

∂x

∂u

∂y

∂u

∂z
∂v

∂x

∂v

∂y

∂v

∂z
∂w

∂x

∂w

∂y

∂w

∂z


∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ =


∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y


CONCEPTUAL UNDERSTANDING

Generally, we use Jacobi’s theorem to convert from Cartesian coordinates to polar, spherical, and
cylindrical co-ordinates.
Change of Variables: Polar Coordinates∫ ∫

D

f(x, y) dx dy =

∫ ∫
D∗
f(r cos θ, r sin θ) r dr dθ

Change of Variables: Cylindrical Coordinates∫ ∫ ∫
W

f(x, y, z) dx dy dz =

∫ ∫ ∫
W ∗

f(r cos θ, r sin θ, z) r dr dθ dz

Change of Variables: Spherical Coordinates∫ ∫ ∫
W

f(x, y, z) dx dy dz =

∫ ∫ ∫
W ∗

f(r sinφ cos θ, r sinφ sin θ, r cosφ) r2 sinφ dr dθ dφ
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Visualizing The Area Differential In Polar Coordinates

The area of the segment of the
circular arc of radius r of an-
gular width ∆θ and length ∆r
is ∆A ≈ (r∆θ)(∆r)

EXAMPLE
We can use the Jacobian of the transformation from Cartesian coordinates (x, y) to polar coordi-
nates (r, θ) to explain why dx dy = r dr dθ.

Let ~T (~x) =

[
x(r, θ)
y(r, θ)

]
where x(r, θ) = r cos θ and y(r, θ) = r sin θ and compute

∣∣∣∣∂(x, y)

∂(r, θ)

∣∣∣∣

Exercise
McCallum, page 893, Example 3. For each of the regions below decide whether to integrate using
polar or Cartesian coordinates. Write down an iterated integral of an arbitrary function f(x, y) over
the given region.
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Cylindrical Coordinates Spherical Coordinates

x = r cos θ x = ρ sinφ cos θ
y = r sin θ y = ρ sinφ sin θ
z = z z = ρ cos θ
0 ≤ r <∞, −2π ≤ θ ≤ 2π, −∞ < z <∞ 0 ≤ ρ <∞, −2π ≤ θ ≤ 2π, 0 ≤ φ ≤ π
r2 = x2 + y2 ρ2 = x2 + y2 + z2

Visualizing The Volume Differential In Cylindrical Coordinates and Spheri-
cal Coordinates

∆v ≈ r∆r∆z∆θ ∆V ≈ ρ2 sinφ∆ρ∆θ∆φ
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EXAMPLE
McCallum, page 903, Exercise 19. Write a triple integral in cylindrical coordinates giving the
volume of a sphere of radius K centered at the origin. Use the order dz dr dθ.

Evaluate the triple integral to show the volume of the sphere of radius K is 4
3
πK3.

Exercise
McCallum, page 903, Exercise 20. Write a triple integral in spherical coordinates giving the
volume of a sphere of radius K centered at the origin. Use the order dθ dρ dφ.

Evaluate the triple integral to show the volume of the sphere of radius K is 4
3
πK3.
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GROUPWORK

McCallum, page 903, Exercise 24-25.
Use (a) Cartesian (b) Cylindrical (c) Spherical coordinates to write down the limits of integration

for
∫
W

dV for the following figures.

24. One-eighth of the sphere with unit radius centered at the origin (occupying the positive x, y
and z quadrants)

25. The shape formed by a cone with 90◦ vertex at the origin topped by the sphere of radius 1
centered at the origin. (Sort of looks like an ice-cream cone.)
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