Multivariable Calculus

Math 212 §2 Fall 2014
(c)2014 Ron Buckmire

Fowler 309 MWF 11:45am - 12:40pm
http://faculty.oxy.edu/ron/math/212/14/

Worksheet 15

TITLE Local Extrema of a Multivariable Function $f(x, y)$
CURRENT READING McCallum, Section 15.1
HW \#7 (DUE THURSDAY 10/16/14 5PM)
McCallum, Section 15.1: 4, 13, 20, 21, 25, 32, 37, 40*.
McCallum, Section 15.2: 8, 9, 10, 11, 12, 17, 19, 20, 27, 31*, 36.

SUMMARY

This worksheet discusses the concept of local extrema (maxima or minima) of functions of multivariable functions. We present the definition of critical points for $f(x, y)$ and introduce the concept of a critical point which is neither a local maximum or local minimum: the saddle point.

DEFINITION: local maximum and local minimum of a multivariable function
f has a local maximum at the point P_{0} if $f\left(P_{O}\right) \geq f(P)$, for all points P near P_{0}.
Similarly, f has a local minimum at the point P_{0} if $f\left(P_{0}\right) \leq f(P)$, for all points P near P_{0}.

Local Extrema For a Surface $z=f(x, y)$

The surface $z=f(x, y)$ has a local maximum at the point $\left(x_{0}, y_{0}\right)$ if $f\left(x_{0}, y_{0}\right) \geq f(x, y)$, for all (x, y) in some neighborhood of $\left(x_{0}, y_{0}\right)$.
The surface $z=f(x, y)$ has a local minimum at $\left(x_{0}, y_{0}\right)$ if $f\left(x_{0}, y_{0}\right) \leq f(x, y)$, for all (x, y) in some neighborhood of $\left(x_{0}, y_{0}\right)$.
RECALL: Critical Points of $y=f(x)$
To find the location of the local maximum or local minimum of a single variable function $y=f(x)$ you found candidate points called critical points by determining where $f^{\prime}(c)=0$ or $f^{\prime}(c)$ failed to exist. We called the point $(c, f(c))$ a critical point of $f(x)$.

DEFINITION: critical points of a multivariable function

The critical points of a multivariable function $f(\vec{x})$ are the points \vec{c} where the gradient function $\vec{\nabla} f$ is either $\overrightarrow{0}$ or undefined.

EXAMPLE

McCallum, page 832, Example 2.
Find and analyze any critical points of $f(x, y)=-\sqrt{x^{2}+y^{2}}$

Exercise

McCallum, page 832, Example 3.
Find and analyze any critical points of $g(x, y)=x^{2}-y^{2}$. Does this function have a local maximum or local minimum?

QUESTION: Does every critical point have to be a local maximum or local minimum?

Second Derivative Test For Functions Of Two Variables

Given (a, b) where $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$ Let

$$
D=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}^{2}(a, b)=\operatorname{det}\left[\begin{array}{ll}
f_{x x}(a, b) & f_{x y}(a, b) \\
f_{y x}(a, b) & f_{y y}(a, b)
\end{array}\right]
$$

One can classify the point (a, b) according to the value of D

- If $D>0$ and $f_{x x}(a, b)>0$ then $f(a, b)$ is a local minimum of $f(x, y)$
- If $D>0$ and $f_{x x}(a, b)<0$ then $f(a, b)$ is a local maximum of $f(x, y)$
- If $D<0$ then $f(a, b)$ is a saddle point of $f(x, y)$
- $D=0$ the test is inconclusive so that $f(a, b)$ could be a local maximum, local minimum, a saddle point or none of the above!

EXAMPLE

Use the Second Derivative Test to classify the critical points of $f(x, y)=A x^{2}+B x y+C y^{2}$ based on the values of A, B and C.

GROUPWORK

McCallum, page 835, Example 6. Find the local maxima, local minima and saddle points of $f(x, y)=\frac{1}{2} x^{2}+3 y^{3}+9 y^{2}-3 x y+9 y-9 x$.

McCallum, page 836, Example 7. Classify the critical points of $f(x, y)=x^{4}+y^{4}$, $g(x, y)=-x^{4}-y^{4}$ and $h(x, y)=x^{4}-y^{4}$.

