Multivariable Calculus

Math 212 §2 Fall 2014 ©2014 Ron Buckmire Fowler 309 MWF 11:45am - 12:40pm http://faculty.oxy.edu/ron/math/212/14/

Worksheet 8

TITLE The Tangent Plane, Differentials and Linear Approximations **CURRENT READING** McCallum, Section 14.3 **HW #4 (DUE WED 09/24/14)** McCallum, *Section 12.6*: 24, 28, 35, 40, 52. *Section 14.1*: 10, 11, 12, 13, 17, 18, 25,26, 36, 37, 41, 48, 49. *Section 14.2*: 8, 9, 14, 24, 25, 30, 34, 36, 39, 51, 52, 65*.

SUMMARY

This worksheet discusses the multivariable analogue of the linear approximation to a singlevariable function, often visualized using tangent lines, to use tangent planes as linear approximations to surfaces z = f(x, y). We will also introduce the concept of infinitesimal differentials.

RECALL: tangent line approximation for f(x) at (a, f(a))

For single variable functions f(x), we can approximate the graph of the function y = f(x) with its tangent line y = T(x) at x = a given by

$$y = T(x) = f(a) + f'(a)(x - a)$$

Of course, you should also recognize the Tangent Line approximation as the First-Degree Taylor Polynomial Approximation of f(x) at x = a.

RECALL: local linearity

A function y = f(x) is said to be locally linear at a point x = a if as one zooms in to that point it can be approximated more and more accurately by its tangent line at that point. Local linearity of a function is a proxy (i.e. conceptual stand-in) for **differentiability** of the function at that point.

QUESTION: Can you write down an example of a function f(x) which is locally linear at the origin? How about a function that is not locally linear at the origin?

Tangent Plane to the Surface of a Multivariable Function

DEFINITION: tangent plane

Given that a surface z = f(x, y) has continuous **partial derivatives** $f_x(a, b)$ and $f_y(a, b)$ then the equation of the Tangent plane at (a, b) is given by

$$z = P(x, y) = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$
(1)

EXAMPLE

McCallum, Page 772, Example 1. Find the equation of the tangent plane at the surface $z = x^2 + y^2$ at the point (3, 4).

Multivariable Functions Can Be Locally Linear Also

The local linearization of a surface z = f(x, y) at appoint (a, b) is when the surface can be approximated by the tangent plane to the surface at that point. In other words,

$$f(x,y) \approx P(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

This approximation is called a **locally linearization** of the surface even though we are using a tangent plane because a plane is linear in the two variables x and y.

EXAMPLE

McCallum, Page 773, Example 2. Find the local linearization of $F(x, y) = x^2 + y^2$ at the point (3, 4) and use it to estimate the value of f(2.9, 4.2) and f(2, 2).

The Differential

Recall that in single variable calculus one can relate the change in output, Δy or Δf , of a function y = f(x) to a change in input Δx at any point x_0 using the expression

$$\Delta y \approx f'(x_0) \Delta x$$
 or $\Delta f \approx f'(x_0) \Delta x$ (2)

There is an equivalent analogue (2) to in Multivariable Calculus for the change in the output of a surface z = f(x, y) at the point (x_0, y_0) compared to the changes of each input variable Δx and Δy .

$$\Delta z \text{ or } \Delta f \approx f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y$$

DEFINITION: differential of z = f(x, y)

The **differential** df (or dz), at a point (a, b) is the linear function of dx and dy given by the equation:

$$df = f_x(a,b)dx + f_y(a,b)dy$$

or in general (i.e. at any point) the differential of f(x, y) can be written as

$$df = f_x \, dx + f_y \, dy \tag{3}$$

The differential can be thought of as a really, really small (i.e. infinitesimal) value associated with the variable that appears after the d.

GROUPWORK

McCallum, page 777, Exercise #23. Find the differential of $f(x, y) = \sqrt{x^2 + y^3}$ at the point (1,2). Use it to estimate the value of f(1.04, 1.98).