| Range | $97.5+$ | $92.5+$ | $90+$ | $87.5+$ | $82.5+$ | $80+$ | $77.5+$ | $72.5+$ | $70+$ | $67.5+$ | $62.5+$ | $60+$ | $60-$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Grade | $\mathrm{A}+$ | A | $\mathrm{A}-$ | $\mathrm{B}+$ | B | $\mathrm{B}-$ | $\mathrm{C}+$ | C | $\mathrm{C}-$ | $\mathrm{D}+$ | D | $\mathrm{D}-$ | F |
| Frequency | 8 | 5 | 1 | 3 | 4 | 1 | 4 | 2 | 0 | 0 | 0 | 0 | 1 |

Summary The results on the in-class version of Exam 2 were surprisingly high, with a median score of 89 and average score of 89 . On Exam 1, 8 of 29 students earned the equivalent of an A (with the curve) while this time on Exam 28 of 29 students earned an A+ with another 6 earning an A or A-. The high score was 107 with 6 scores above 100!
\#1 Chain Rule, Partial Derivatives. (a) In this problem you have $x=s+t$ and $y=s-t$ so that $f(x, y)$ is really $f(x(s, t), y(s, t))$. Everyone was able to draw the correct relationship between the variables. (b) Then use the diagram to write down the correct chain rule expression for $f_{s}=f_{x} x_{s}+f_{y} y_{s}$ and $f_{t}=f_{x} x_{t}+f_{y} y_{t}$. (c) Use the information from above to show that $x_{s}=1$, $x_{t}=1, y_{s}=1$ and $y_{t}=-1$. Multiple your expressions for $f_{s}$ and $f_{t}$ together and you will see it becomes $f_{x}^{2}-f_{y}^{2}$.
\#2 Unconstrained Multivariable Optimization, Extreme Value Theorem, Repeated Partial Differentiation. (a) The function is $f(x, y)=x^{3}-x y-y^{2}+y$ so that $f_{x}=3 x^{2}-y$ and $f_{y}=-x-2 y+1$. To find critical points one has to find the points $(x, y)$ so that both $f_{x}=0$ and $f_{y}=0$ are satisfied simultaneously! This is NOT the same things as saying simply that $f_{x}=f_{y}$. The critical points end up being $\left(-\frac{1}{2}, \frac{3}{4}\right)$ and $\left(\frac{1}{3}, \frac{1}{3}\right)$. By checking the expression $D=f_{x x} f_{y y}-f_{x y}^{2}$ at these points one can see that $D\left(-\frac{1}{2}, \frac{3}{4}\right)=5>0$ which indicates a local max (since $f_{x x}<0$ at this point). $D\left(\frac{1}{3}, \frac{1}{3}\right)=-5<0$ which indicates a saddle. (b) A saddle obviously can not be a global extrema. So the only candidate is the local max but since it is clear that when $x \rightarrow \infty$ and $y=0, f(x, y) \rightarrow+\infty$ the local max is not the global max. The extreme value theorem tells you that IF the domain is closed and bounded THEN you must have a global max and global min. It doesn't tell you anything if the domain is NOT closed or NOT bounded.
\#3 Constrained Multivariable Optimization, Lagrange Multipliers. The key problem here is to figure out that the constraint is the function $g(x, y)=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ while the objective function is the area of the rectangle trapped within the ellipse, i.e. $f(x, y)=4 x y$. First thing to do is to compute $f_{x}, f_{y}, g_{x}$ and $g_{y}$.This get you the Lagrange Multiplier equations $f_{x}=2 y=\lambda g_{x}=$ $\lambda \frac{2 x}{a^{2}}, \quad f_{y}=2 x=\lambda g_{y}=\lambda \frac{2 y}{b^{2}}, \quad g(x, y)=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ These first two can be manipulated to obtain the expression $x^{2} b^{2}=y^{2} a^{2}$ This means that $\frac{y^{2}}{b^{2}}=\frac{x^{2}}{a^{2}}$ so combining with the constrain equation gives you $\frac{y^{2}}{b^{2}}+\frac{y^{2}}{b^{2}}=1$ so $y^{2}=b^{2} / 2$ and $x^{2}=a^{2} / 2$ which means that $x^{2} y^{2}=a^{2} b^{2} / 4$ so $x y=a b / 2$ and the maximum area $4 x y=2 a b$.
\#4 Polar Coordinates, Iterated Integration, Multiple Integration. (a) The integral $\mathcal{I}=\int_{0}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} y d x d y$ which means that $0 \leq y \leq 1$ and $-\sqrt{1-y^{2}} \leq x \leq \sqrt{1-y^{2}}$. This means that $x^{2}+y^{2}=1$. So the region being integrated is the top half of the unit disk centered at the origin.
(b) and (c) You need to evaluate two of the following three integrals.

$$
\mathcal{I}=\int_{0}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} y d x d y=\int_{-1}^{1} \int_{0}^{\sqrt{1-y^{2}}} y d x d y=\int_{0}^{\pi} \int_{0}^{1}(r \sin \theta) r d r d \theta=\frac{2}{3}
$$

BONUS Triple Integral. The volume of a cone is $\frac{1}{3} \pi R^{2} h$ (best choice is to use cylindrical coordinates). The volume of the triangular pyramid with base $\frac{1}{2} a b$ is $\frac{1}{6} \pi a b h$ (best choice is to use double integral of $z=h(1-x / a-y / b)$.)

