MATH 212 FALL 2014
Ron Buckmire
Study Guide for Exam II

(Mostly grabbed from Exam 2 Study Guide from Spring 2005 by Don Lawrence)

Exam 2 will cover material from Worksheets 11 through 21 . I try to make study guides complete, but there is no guarantee - I might think of something later that I forgot to include. Also look at homeworks, quizzes, handouts, and class notes.

Topics

- Optimization
- Locate and classify critical points in a contour diagram
- Find critical points given a formula for f
- Second derivative test
- Applied max-min (you aren't required to classify your critical point in these)
- Parametrize a constraint boundary
- Lagrange multipliers
- Find Lagrange points on a constraint
- Understand basically why setting $\nabla f=\lambda \nabla g$ finds candidates
- Extreme value theorem, including understanding what "closed" and "bounded" mean
- Use limits to discuss the existence of global maxes/mins
- Integration
- Predict the sign of a multiple integral
- Compute a multiple integral
- Sketch the region of integration
- Choose or change the order of integration
- Cylindrical coordinates and triple integrals
- Spherical coordinates and triple integrals
- Alternative coordinates for integrals
- Change integral between polar and Cartesian coordinates
- Change integrals between Cartesian and spherical or cylindrical coordinates
- Chain rule
- Chain rule diagrams
- Clairault's Theorem (Mixed partials of continuous functions are equal, or $f_{x y}=f_{y x}$)
- Graphical and algebraic computation of repeated partial derivatives like $f_{x y}, f_{x x}, f_{y y}$

Problems (Of course there are many other relevant problems in your text.) (Problems 1-4 were deleted)
(5) Find the critical points of $f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}$, and use the second derivative test to classify them as max, min, saddle, or can't tell. Then argue that f can't have a global max or min.
(6) $\int_{0}^{1} \int_{2 x}^{2} \cos \left(1+y^{2}\right) d y d x=$
(7) Set up a multiple integral for finding the volume bounded by the plane $z=6-2 x-3 y$ and the coordinate planes. Do not compute the integral. [Hint: start by finding the line where $z=6-2 x-3 y$ intersects the xy-plane.]
(8) Find the global maximum and minimum of $f(x, y)=3 x-2 y$ on the ellipse $x^{2}+2 y^{2}=44$. Name any methods and/or theorems you use.
(9) $\int_{0}^{1} \int_{-2}^{0} \int_{-\sqrt{4-y^{2}}}^{0} \cos \left(x^{2}+y^{2}\right) d x d y d z=$
(10) [10 points] Use limits to discuss the existence of global maxima and minima of $f(x, y)=x^{2}+x y^{4}$.
(11) From the 1998 senior comps exam: Suppose $f(x, y, z)=x^{2}+y^{3}+5 y z$, and suppose $g(t)=(a(t), b(t), c(t))$ is a "vector-valued function". Suppose $a(0)=4, b(0)=5, c(0)=6$, $a^{\prime}(0)=3, b^{\prime}(0)=2$, and $c^{\prime}(0)=1$. Let $h(t)=f(g(t))$. Find $h^{\prime}(0)$.
(12) Draw the following contour diagram in the first quadrant: five parallel lines with negative slope, getting farther apart as they move away from the origin, labeled $5,4,3,2$, and 1 as you move away from the origin. Find the signs of the first and second partial derivatives.
(13) Suppose that $f(x, y)$ has continuous partials of all orders, and suppose that $f_{x x y}=x^{2} y$, $f_{x y y}=x y^{2}$, and $f_{y y y}=y^{3}$.
(a) Find $f_{y x x x}$.
(b) Argue that there can't actually be such a function f.
(14) Write down the iterated integrals with correct limits which would be necessary to compute the volume of each wedge of cheese which has a perfectly horizontal base and height but that exactly six wedges will make up a completely circular cheese slab of radius a and height h.
(a) Now change the order of integration and show that the volume is the same.
(b) Come up with another order of integration which represents the same volume.
(c) How many times can you do this?

Math 212 Fall 2014 Blue Notes

