Study Problems for Exam 1 in Math 212 Fall 2014

(1) If $f(\omega, x)=2 \omega x^{2}$, find $f\left(x, x^{2}\right)$.
(2) Sketch both a contour diagram and a graph of sections with y fixed, for the surface $z=\sqrt{x^{2}+y^{2}}-1$. Then sketch the surface.
(3) Write down a function $f(x, y, z)$ for which the surface in problem (2) is a level surface. How many such functions are there?
(4) How far apart (shortest distance) are the spheres $x^{2}+(y-2)^{2}+(z+3)^{2}=1$ and $(x-3)^{2}+y^{2}+(z+2)^{2}=5$? Sketch the second sphere.
(5) Sketch the plane tangent to $f(x, y)=x^{2} y+\frac{x}{y}+1$ at $(2,1)$.
(6) Sketch the contours of $f(x, y)=x+y^{2}$.
(7) Here are two points: $\mathrm{P}=(1,2,3), \mathrm{Q}=(-2,2,4)$. Write down the coordinates of a third point R , then find an equation for the plane containing P, Q, and R .
(8) Suppose that a function f is defined by $f_{x}=x f+y, \quad f_{y}=f+2, \quad f(-1,2)=3$.

Use a tangent plane to approximate $f(-.5,1.6)$.
(9) Describe a real-world function $f(x, y)$, for which f_{x} is negative, f_{y} is positive, and the units on f_{x} and f_{y} are dollars per person and dollars per mile, respectively.
(10) If $f(x, y)=\frac{\sin x y+2^{x}}{\ln y \cdot \arctan y}$, find ∇f.
(11) Let $f(x, y)=x^{2} y^{2}+3$. Use the limit definition of partial derivative to find f_{y}.
(12) Suppose that \vec{u} and \vec{v} have the same length, and that \vec{u} points north and \vec{v} points west. In which directions do the following vectors point? $\vec{u}+\vec{v}, \vec{u}-\vec{v}, \vec{v}-\vec{u}$, $\vec{v}+1000 \vec{u}$.
(13) A line contains the points $(1,2,3)$ and $(3,0,-3)$. Find a unit vector parallel to the line.
(14) Given $f(x, y)=x+y^{2}$. Find the equation of the tangent plane at the point $(1,1,2)$.
(15) Find the equation of another plane which is orthogonal to the one you found in (14).
(Adapted from Exam 1 Study Guide, Math 224, Spring 2005, Prof. Don Lawrence)

