MATH 212 Fall 2014 (Buckmire) Exam 1 Study Guide I Answers

(1) $2 x^{5}$
(2) Note: the $y>-1$ sections are halves of hyperbolas, yuckers.
(3) $f(x, y, z)=z-\sqrt{x^{2}+y^{2}}$. There are infinitely many correct answers, such as $f=z-\sqrt{x^{2}+y^{2}}+47, f=\sqrt{x^{2}+y^{2}}-z$, and $f=47 z-47 \sqrt{x^{2}+y^{2}}$.
(4) The distance is $\sqrt{14}-1-\sqrt{5} \approx .506$. This is the distance between the centers of the two sphere, i.e. between $(0,2,-3)$ and $(3,0,-2)$ with the two radii subtracted.
(5) Tangent plane: $z=5+5(x-2)+2(y-1)$
(6) The contours are parabolas symmetric about the x-axis.
(7) I used $R=(1,0,0)$, and got the plane $z=3-\frac{1}{3}(x-1)+\frac{3}{2}(y-2)$. Your answer will of course depend on the third point you chose.
(8) Tan plane: $z=3-(x+1)+5(y-2)$

$$
f(-.5,1.6) \approx .5
$$

(9) For example, $\mathrm{f}(\mathrm{x}, \mathrm{y})$ is the amount of money (in dollars) you'll find lying on the streets of Snarfville tomorrow, if x other people are looking for money and you're willing to wander around for y hours.
(10) Holy monkey, I'm not typing that.

$$
\begin{align*}
f_{y} & =\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}=\lim _{h \rightarrow 0} \frac{\left[x^{2}(y+h)^{2}+3\right]-\left[x^{2} y^{2}+3\right]}{h} \tag{11}\\
& =\lim _{h \rightarrow 0} \frac{x^{2} y^{2}+2 x^{2} y h+x^{2} h^{2}-x^{2} y^{2}}{h}=\lim _{h \rightarrow 0} \frac{h\left(2 x^{2} y+x^{2} h\right)}{h}=\lim _{h \rightarrow 0}\left(2 x^{2} y+x^{2} h\right) \\
& =2 x^{2} y
\end{align*}
$$

(12) Northwest, northeast, southwest, and very slightly to the west of north
(13) $\left(\frac{2}{\sqrt{44}}, \frac{-2}{\sqrt{44}}, \frac{-6}{\sqrt{44}}\right)$
(14) The normal to the surface is grad F where $F(x, y, z)=x+y^{2}-z=0$ which is the vector $\mathbf{i}+2 \mathbf{j}-\mathbf{k}$. The tangent plane is $x+2 y-z=1$.
(15) A plane normal to the previous plane will have a vector orthogonal to $\mathbf{i}+\mathbf{2} \mathbf{j}-\mathbf{k}$ which will lay in the original plane. I choose the vector $\mathbf{2 i} \mathbf{i} \mathbf{j}$ which is the normal for the plane $2 x-y=1$.

