Quiz 7

Basic Calculus 2

Name:	
Date:	
Time Begun: .	
Time Ended	

Friday April 3, 1998 Ron Buckmire

Topic covered: Determining Convergence / Divergence of Improper Integrals by Comparison

The idea behind this quiz is to give you more practice determining whether a particular improper integral will converge or diverge without evaluating it, but by comparing it to an improper integral you already know something about.

Instructions:

- 1. Once you open the quiz, you have 90 minutes to complete it.
- 2. You may use the book or any of your class notes, and you may use a calculator. You must work alone.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one.
- 4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- 5. Relax and enjoy...
- 6. This quiz is due on Monday, April 6, in class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I, _____, pledge my honor as a human being and Occidental student, that I have followed all the rules above to the letter and in spirit.

Consider the function $f(z) = \frac{1}{\sqrt{z} + z} = \frac{1}{z^{1/2} + z}$. We want to try and determine whether $I = \int_{1}^{\infty} \frac{1}{\sqrt{z} + z} dz$ and $J = \int_{0}^{1} \frac{1}{\sqrt{z} + z} dz$ converge or diverge.

(a) (*4 points*) Use the rules developed in class to say whether each of the following integrals **converges** or **diverges**:

$$\int_0^1 \frac{dz}{2\sqrt{z}} \qquad \qquad \int_1^\infty \frac{dz}{2\sqrt{z}} \qquad \qquad \int_0^1 \frac{dz}{2z} \qquad \qquad \int_1^\infty \frac{dz}{2z}$$

(b) (1 point) For
$$z > 1$$
 is $\frac{1}{\sqrt{z} + z} > \frac{1}{z + z}$ or $\frac{1}{\sqrt{z} + z} < \frac{1}{z + z}$?
For $z > 1$ is $\frac{1}{\sqrt{z} + z} > \frac{1}{\sqrt{z} + \sqrt{z}}$ or $\frac{1}{\sqrt{z} + z} < \frac{1}{\sqrt{z} + \sqrt{z}}$?

(c) (*2 points*) Does $I = \int_{1}^{\infty} \frac{dz}{\sqrt{z}+z}$ converge or diverge? Support your answer by explaining how the inequalities in part (b) and your answers to part (a) allow you to determine whether *I* converges or diverges without actually evaluating it. If you like, you can use a graph to support your explanation.

(d) (1 point) For
$$0 < z < 1$$
 is $\frac{1}{\sqrt{z}+z} > \frac{1}{z}$ or $\frac{1}{\sqrt{z}+z} < \frac{1}{z}$?
For $0 < z < 1$ is $\frac{1}{\sqrt{z}+z} > \frac{1}{\sqrt{z}+\sqrt{z}}$ or $\frac{1}{\sqrt{z}+z} < \frac{1}{\sqrt{z}+\sqrt{z}}$?

(e) (*2 points*) Does $J = \int_0^1 \frac{dz}{\sqrt{z}+z}$ converge or diverge? Support your answer by explaining how the inequalities in part (d) and your answers to part (a) allow you to determine whether *I* converges or diverges without actually evaluating it. If you like, you can use a graph to support your explanation.