Calculus 2

Class 29: Monday April 21 Special Topic: Fourier Series, Part 1

Warm-Up

Write down an example of a periodic function that you know and sketch it below:

(Informal) DEFINITION: periodic

A function f(t) is called **periodic** if it "repetitive," i.e., if its graph "repeats itself." In other words, the function produces the same output values in sequence, for a different set of inputs, in cyclic fashion.

The **period** of f(t) is the "time it takes for the graph to repeat itself" (or, the time it takes to go through one cycle).

DEFINITION: periodic function

A function f(t) is called **periodic** if for every t, f(t + p) = f(t), where p is some non-zero constant number.

p is called the **period** of f(t) (assuming it's the smallest possible such number which satisfies f(t+p) = f(t)).

GROUPWORK

Label each of the following as periodic or not periodic. If the function is periodic, find its period. (a) $f(x) = \sin(x)$ (b) $g(t) = t^2$ (c) $f(x) = x^2 \sin(x)$ (d) f(t) = t (e) f(t) = 4 (f) $h(x) = \cos(2x)$ (g) $f(x) = \begin{cases} 2 & \text{if } 2n \le x \le 2n+1 \\ 1 & \text{if } 2n+1 < x < 2n+2 \end{cases}$ where *n* is an integer

Pick which functions you think are periodic, sketch them below, and indicate their period

Math 120

Class 29

Fourier Series

In general, a Fourier Series is used to approximate a function f(t) with period 2π

$$f(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(kt) + \sum_{k=1}^{\infty} b_k \sin(kt)$$

where

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt$$

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(kt) dt$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(kt) dt$$

This usually involves a fair amount of integration to find explicit forms of the coefficients a_k and b_k . **NOTE:** a_0 is the average value of f(x) on the interval $[-\pi, \pi]$.

EXAMPLE

Consider the following function, which is a famous signal called a square wave.

$$f(x) = \begin{cases} -1 & \text{if } -\pi \le x \le \\ 1 & \text{if } 0 < x < \pi \end{cases}$$

1. Sketch the graph of f(x) below between $-2\pi \le x \le 3\pi$.

2. Find the zeroth degree Fourier polynomial for f(x).

2. Find the first degree Fourier polynomial for f(x).

Math 120

Exercise

3. Show the general form of the Fourier polynomial for this f(x) is $+\sum_{k=1}^{\infty} \frac{2}{\pi} [1-(-1)^k] \sin(kx)$.

4. Write down the 7th degree Fourier polynomial approximation to the square wave.

5. For what values of x will the infinite series converge? What happens when you try absolute ratio test?

The Fourier polynomials $F_N(x) = \sum_{k=1}^N \frac{2}{\pi} [1 - (-1)^k] \sin(kx)]$ is graphed below. The figures show $F_1(x)$, $F_7(x)$ and $F_{15}(x)$

What do you think the graph of $F_{\infty}(x)$ looks like?