Special Topic: Fourier Series, Part 1

Warm-Up

Write down an example of a periodic function that you know and sketch it below:
(Informal) DEFINITION: periodic
A function $f(t)$ is called periodic if it "repetitive," i.e., if its graph "repeats itself." In other words, the function produces the same output values in sequence, for a different set of inputs, in cyclic fashion.
The period of $f(t)$ is the "time it takes for the graph to repeat itself" (or, the time it takes to go through one cycle).

DEFINITION: periodic function

A function $f(t)$ is called periodic if for every $t, f(t+p)=f(t)$, where p is some non-zero constant number.
p is called the period of $f(t)$ (assuming it's the smallest possible such number which satisfies $f(t+p)=f(t))$.

GROUPWORK

Label each of the following as periodic or not periodic. If the function is periodic, find its period.
(a) $f(x)=\sin (x)$
(b) $g(t)=t^{2}$
(c) $f(x)=x^{2} \sin (x)$
(d) $f(t)=t$
(e) $f(t)=4$
(f) $h(x)=\cos (2 x)$
(g) $f(x)=\left\{\begin{array}{ll}2 & \text { if } 2 n \leq x \leq 2 n+1 \\ 1 & \text { if } 2 n+1<x<2 n+2\end{array}\right.$ where n is an integer

Pick which functions you think are periodic, sketch them below, and indicate their period

Fourier Series

In general, a Fourier Series is used to approximate a function $f(t)$ with period 2π

$$
f(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos (k t)+\sum_{k=1}^{\infty} b_{k} \sin (k t)
$$

where

$$
\begin{aligned}
a_{0} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) d t \\
a_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos (k t) d t \\
b_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin (k t) d t
\end{aligned}
$$

This usually involves a fair amount of integration to find explicit forms of the coefficients a_{k} and b_{k}. NOTE: a_{0} is the average value of $f(x)$ on the interval $[-\pi, \pi]$.

EXAMPLE

Consider the following function, which is a famous signal called a square wave.
$f(x)= \begin{cases}-1 & \text { if }-\pi \leq x \leq 0 \\ 1 & \text { if } 0<x<\pi\end{cases}$

1. Sketch the graph of $f(x)$ below between $-2 \pi \leq x \leq 3 \pi$.
2. Find the zeroth degree Fourier polynomial for $f(x)$.
3. Find the first degree Fourier polynomial for $f(x)$.

Exercise

3. Show the general form of the Fourier polynomial for this $f(x)$ is $+\sum_{k=1}^{\infty} \frac{2}{\pi}\left[1-(-1)^{k}\right] \sin (k x)$.
4. Write down the 7th degree Fourier polynomial approximation to the square wave.
5. For what values of x will the infinite series converge? What happens when you try absolute ratio test?

The Fourier polynomials $\left.F_{N}(x)=\sum_{k=1}^{N} \frac{2}{\pi}\left[1-(-1)^{k}\right] \sin (k x)\right]$ is graphed below. The figures show $F_{1}(x), F_{7}(x)$ and $F_{15}(x)$

What do you think the graph of $F_{\infty}(x)$ looks like?

