Introduction to Taylor Series and Maclaurin Series

Warm-Up

(a) What's the equation of a tangent line to the function $f(x)=e^{x}$ at $x=0$?

We can Represent ANY Function By A Power Series!

Let's suppose we can represent the function $f(x)$ by a power series centered at a (also known as the power series about a)
$f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\ldots$
Let's take the first three derivatives of this function

$$
\begin{aligned}
f^{\prime}(x) & =0 \cdot c_{0}+1 \cdot c_{1}+2 \cdot c_{2}(x-a)+3 \cdot c_{3}(x-a)^{2}+4 \cdot c_{4}(x-a)^{3}+\ldots \\
f^{\prime \prime}(x) & =0 \cdot c_{0}+0 \cdot c_{1}+2 \cdot c_{2}+3 \cdot 2 \cdot c_{3}(x-a)+4 \cdot 3 \cdot c_{4}(x-a)^{2}+\ldots \\
f^{(3)}(x) & =0 \cdot c_{0}+0 \cdot c_{1}+0 \cdot c_{2}+3 \cdot 2 \cdot c_{3}+4 \cdot 3 \cdot 2 \cdot c_{4}(x-a)+\ldots
\end{aligned}
$$

Look at what happens when we evaluate these derivatives at the value $x=a$,

$$
\begin{aligned}
f^{\prime}(a) & =1 \cdot c_{1} \\
f^{\prime \prime}(a) & =2 \cdot 1 \cdot c_{2} \\
f^{(3)}(a) & =3 \cdot 2 \cdot 1 \cdot c_{3}
\end{aligned}
$$

By remembering that $f(a)=c_{0}$ we can get an expression for the first four terms of the power series for $f(x)$ centered about the point $x=a$

$$
\begin{aligned}
c_{0} & =f(a) \\
c_{1} & =f^{\prime}(a) \\
c_{2} & =\frac{f^{\prime \prime}(a)}{2} \\
c_{3} & =\frac{f^{(3)}(a)}{3 \cdot 2} \\
c_{4} & =\frac{f^{(4)}(a)}{4 \cdot 3 \cdot 2} \\
\vdots & =\vdots \\
c_{n} & =\frac{f^{(n)}(a)}{n!}
\end{aligned}
$$

In other words, now that we have an expression for the $n^{t h}$ coefficient, we can represent the function $f(x)$ by the following power series:

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime}(a)}{3!}(x-a)^{3}+\ldots=\sum_{k=0}^{\infty} \frac{f(k)(a)}{k!}(x-a)^{k}
$$

This expression is known as the Taylor Series (also known as the Taylor Series expansion) for the function $f(x)$ about the point $x=a$. It allows us to find a power series associated with any given function.

DEFINITION: MacLaurin Series

The Taylor Series expansion for a given function about the point $a=0$ is called the MacLaurin Series for the function $f(x)$.

$$
f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{(3)}(0)}{3!} x^{3}+\ldots=\sum_{k=0}^{\infty} \frac{f(k)(0)}{k!} x^{k}
$$

EXAMPLE

Let's show that the Taylor Series expansion for $f(x)=\sin (x)$ about the point $a=0$ is $\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}$

Let's find the radius of convergence of the Maclaurin Series for $\sin (x)$.

Exercise

Find the MacLaurin Series for $f(x)=e^{x}$ and show that it converges to e^{x} for every x-value.

MacLaurin Series That We Should All Know

$$
\begin{aligned}
\sin (x) & =\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots \\
\cos (x) & =\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots \\
e^{x} & =\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \\
\arctan (x) & =\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{2 k+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\ldots \\
\ln (1+x) & =\sum_{k=1}^{\infty}(-1)^{k+1} \frac{x^{k}}{k}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots \\
\frac{1}{1-x} & =\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+x^{3}+\ldots \\
(a+x)^{n} & =\sum_{k=0}^{\infty} a^{n-k} x^{k} \frac{n!}{k!(n-k)!}=a^{n}+n a^{n-1} x+\frac{n(n-1)}{2!} a^{n-2} x^{2}+\frac{n(n-1)(n-2)}{3!} a^{n-3} x^{3}+\ldots
\end{aligned}
$$

NOTE: The first three of these have infinite radius of convergence, while the other have a radius of convergence of 1 . (Their intervals of convergence may vary so you need to check the end points!)
EXAMPLE
What's the Taylor Series Expansion of $\ln \left(1-x^{2}\right)$ and for what values of x is it valid?

DEFINITION: Taylor Polynomial
The $n^{\text {th }}$ degree Taylor Polynomial approximation for a given function $f(x)$ about the point $(a, f(a))$ is the partial sum of the $n+1$ terms of the Taylor Series for the function $f(x)$ about the point a.
EXAMPLE
What's the first order Taylor Polynomial approximation to $f(x)=e^{x}$ at $x=0$? What's the second-order Taylor Polynomial approximation?

The first order Taylor approximation of a function $f(x)$ at $x=a$ is equivalent to the tangent line approximation to $f(x)$ at a.

