CALCULUS 2

Class 25: Friday April 4

Using Power Series To Represent Functions

RECALL

We showed last time that we could represent the function $f(x) = \frac{1}{1-x}$ by the power series $\sum_{n=0}^{\infty} x^n \text{ when } -1 < x < 1. \text{ Can we do this for other functions? Sure!}$ **Exercise** Let's represent the function $\frac{1}{1+x^2}$ by a power series. (Find the radius and interval of convergence

of this power series.) $\frac{1}{1+x^2}$ by a power series. (Find the radius and interval of convergence

EXAMPLE
Remember
$$\int \frac{1}{1+x^2} dx = \arctan(x)$$
 and $\arctan(1) = \frac{\pi}{4}$.

We can use this information to show the amazing result

$$\pi = 4 - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \frac{4}{9} - \ldots = 4 \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$$
 (Leibniz π Formula)

So we have shown that $\arctan(x)$ can be represented by a power series on the interval $-1 \le x \le 1$.

THEOREM

Given a power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ has radius of convergence R > 0, the function defined by $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ possesses a derivative f'(x) and anti-derivative F(x) on the interval (a-R, a+R) with

(i)
$$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \ldots = \sum_{n=0}^{\infty} c_n n(x-a)^{n-1}$$

(ii)
$$F(x) = \int f(x)dx = C + c_0(x-a) + c_1 \frac{(x-a)^2}{2} + c_2 \frac{(x-a)^3}{3} + \dots = C + \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}$$

The radius of convergence of f'(x) and F(x) are both R (the same as the radius of convergence of f(x)). The intervals of convergence may differ however. GROUPWORK

Use this theorem to obtain a power series representation of $\ln(1+x)$. What are the interval of convergence and radius of convergence for the series.

Exercise

Stewart, page 475, #42. Find the sum of the series $\sum_{n=1}^{\infty} \frac{4^n}{n5^n}$.