RECALL

We showed last time that we could represent the function $f(x)=\frac{1}{1-x}$ by the power series $\sum_{n=0}^{\infty} x^{n}$ when $-1<x<1$. Can we do this for other functions? Sure! Exercise
Let's represent the function $\frac{1}{1+x^{2}}$ by a power series. (Find the radius and interval of convergence of this power series.)

EXAMPLE

Remember $\int \frac{1}{1+x^{2}} d x=\arctan (x)$ and $\arctan (1)=\frac{\pi}{4}$.
We can use this information to show the amazing result

$$
\pi=4-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\frac{4}{9}-\ldots=4 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \quad(\text { Leibniz } \pi \text { Formula })
$$

So we have shown that $\arctan (x)$ can be represented by a power series on the interval $-1 \leq x \leq 1$.

THEOREM

Given a power series $\sum^{\infty} c_{n}(x-a)^{n}$ has radius of convergence $R>0$, the function defined by $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{\sum_{n}^{0}}$ possesses a derivative $f^{\prime}(x)$ and anti-derivative $F(x)$ on the interval $(a-R, a+R)$ with
(i) $f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+4 c_{4}(x-a)^{3}+\ldots=\sum_{n=0}^{\infty} c_{n} n(x-a)^{n-1}$
(ii) $F(x)=\int f(x) d x=C+c_{0}(x-a)+c_{1} \frac{(x-a)^{2}}{2}+c_{2} \frac{(x-a)^{3}}{3}+\ldots=C+\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}$

The radius of convergence of $f^{\prime}(x)$ and $F(x)$ are both R (the same as the radius of convergence of $f(x)$). The intervals of convergence may differ however.
GROUPWORK
Use this theorem to obtain a power series representation of $\ln (1+x)$. What are the interval of convergence and radius of convergence for the series.

Exercise

Stewart, page 475, \#42. Find the sum of the series $\sum_{n=1}^{\infty} \frac{4^{n}}{n 5^{n}}$.

