Warm-Up

(a) What limit does the sequence $10^{0.1}, 100^{0.01}, 100000^{0.00001}, \ldots$ represent? Does this sequence have a limit? If so, what is it?
(b) What is the degree of the polynomial $p(x)=x^{7}-x^{3}+4 x^{2}+2 x-13$?

DEFINITION: Power Series

A power series is a series of the form

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots
$$

where x is variable and the constants c_{n} are known as the coefficients of the series.
If the power series converges to a value for certain values of x then we can consider it a function $f(x)$ and think of it as a polynomial with infinitely many terms or an infinite degree polynomial.

EXAMPLE

Suppose $c_{n}=1$ for all n, then the power series looks like $\sum_{n=0}^{\infty} x^{n}$. Write out the first 5 terms. Does this series remind you of anything?

Recall, that we can use the Absolute Ratio Test to test for convergence of series. Let's do that.

Thus, we have shown that

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} \quad \text { when }-1<x<1
$$

Exercise

Stewart, page 465, Example 2. For what values of x does the power series $\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{n}$ converge?

THEOREM

For a given power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ there are only three possibilities:
(i) The series converges only when $x=a$
(ii) The series converges for all x values
(iii) There is a positive number R such that the series converges if $|x-a|<R$ and the series diverges if $|x-a|>R$

DEFINITION: Radius of Convergence and Interval of Convergence

The radius of convergence R of a power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ is defined to be

$$
\frac{1}{R}=\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|
$$

and the interval of convergence is either (i) $a-R<x<a+R$ or ($a-R, a+R$); (ii) $a-R \leq x<a+R$ or $[a-R, a+R$); (iii) $a-R<x \leq a+R$ or $(a-R, a+R]$; or (iv) $a-R \leq x \leq a+R$ or $[a-R, a+R]$ when the interval of convergence is not a single point (i.e. $R=0$) or all x-values $(R=\infty)$.

EXAMPLE

Stewart, page 465, Example 3. Find the domain of the Bessel function of order 0 defined by $J_{0}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n}(n!)^{2}}$.

Exercise

Stewart, page 467, Example 5. Find the radius of convergence and the interval of convergence of $\sum_{n=0}^{\infty} \frac{n(x+2)^{n}}{3^{n+1}}$.

